My name is Subhashish Chattopadhyay. I have been teaching for IIT-JEE, Various International Exams (such as IMO [International Mathematics Olympiad], IPhO [International Physics Olympiad], IChO [International Chemistry Olympiad]), IGCSE (IB), CBSE, I.Sc, Indian State Board exams such as WB-Board, Karnataka PU-II etc since 1989. As I write this book in 2016, it is my 25th year of teaching. I was a Visiting Professor to BARC Mankhurd, Chembur, Mumbai, Homi Bhabha Centre for Science Education (HBCSE) Physics Olympics camp BARC Campus.
The selection for National Camp (for Official Science Olympiads - Physics, Chemistry, Biology, Astronomy) happens in the following steps....

1) **NSEP** (National Standard Exam in Physics) and **NSEC** (National Standard Exam in Chemistry) held around 24th November. Approx 35,000 students appear for these exams every year. The exam fees is Rs 100 each. Since 1998 the IIT JEE toppers have been topping these exams and they get to know their rank/performance ahead of others.

2) **INPhO** (Indian National Physics Olympiad) and **INChO** (Indian National Chemistry Olympiad). Around 300 students in each subject are allowed to take these exams. Students coming from outside cities are paid fair from the Govt of India.

3) The Top 35 students of each subject are invited at HBCSE (Homi Bhabha Center for Science Education) Mankhurd, near Chembur, BARC, Mumbai. After a 2-3 weeks camp the top 5 are selected to represent India. The flight tickets and many other expenses are taken care by Govt of India.

Since last 50 years there has been no dearth of “Good Books“. Those who are interested in studies have been always doing well. This e-Book does not intend to replace any standard text book. These topics are very old and already standardized.
There are 3 kinds of Text Books

- The thin Books - Good students who want more details are not happy with these. Average students who need more examples are not happy with these. Most students who want to “Cram” quickly and pass somehow find the thin books “good” as they have to read less !!

- The Thick Books - Most students do not like these, as they want to read as less as possible. Average students are “busy” with many other things and have no time to read all these.

- The Average sized Books - Good students do not get all details in any one book. Most bad students do not want to read books of “this much thickness“ also !!

We know there can be no shoe that’s fits in all.

Printed books are not e-Books! Can’t be downloaded and kept in hard-disc for reading “later”

So if you read this book later, you will get all kinds of examples in a single place. This becomes a very good “Reference Material”. I sincerely wish that all find this “very useful”.

Students who do not practice lots of problems, do not do well. The rules of “doing well” had never changed Will never change !
After 2016 CBSE Mathematics exam, lots of students complained that the paper was tough!

CBSE assures remedial measures for tricky and tough Class XII Math paper

After several students claimed that the Central Board of Secondary Education (CBSE) Class XII board Mathematics examination paper was 'tricky' and tough, the board has issued a clarification on remedial measures which are likely to be taken before evaluation.

The CBSE says that feedback received from various stakeholders like students, subject teachers and examiners will be put before the committee of subject experts.
On 21st May 2016 the CBSE standard 12 result was declared. I loved the headline "CBSE Class 12 Results out: No leniency in Maths paper, high paper standard to be maintained in future".

The CBSE Class 12 Mathematics board exam on March 14 reduced many students to tears as they found the paper quite lengthy and tough and many couldn’t finish it on time. The results show an overall lowering of marks received in the Maths paper.

The CBSE (Central Board of Secondary Education) Class 12 Board exam results have been announced today, i.e. on May 21, around 10:30 am ahead of time. Students may check their scores at the official website, www.cbseresults.nic.in. (Read: CBSE Class 12 Boards 2016: Results announced ahead of time! Check your score at cbseresults.nic.in)
In 2015 also the same complain was there by many students.

New Delhi: A senior Congress member on Thursday raised the issue of the tough mathematics question paper in the ongoing CBSE board examinations and asked the government to consider the issue "seriously".

So we see that by raising frivolous requests, even upto parliament, actually does not help. Many times requests from several quarters have been put to CBSE, or Parliament etc for easy Math Paper. These kinds of requests actually can-not be entertained, never will be.
In March 2016, students of Karnataka PU-II also complained the same, regarding standard 12 (PU-II Mathematics Exam). Even though the Math Paper was identical to previous year, most students had not even solved the 2015 Question Paper.

These complaints are not new. In fact since last 40 years, (since my childhood), I always see this; every year the same setback, same complain!

In this e-Book I am trying to solve this problem. Those students who practice can learn.

No one can help those who are not studying, or practicing.
A very polite request:

I wish these e-Books are read only by Boys and Men. Girls and Women, better read something else; learn from somewhere else.
Preface

We all know that in the species “Homo Sapiens”, males are bigger than females. The reasons are explained in standard 10, or 11 (high school) Biology texts. This shapes or size, influences all of our culture. Before we recall / understand the reasons once again, let us see some random examples of the influence.

Random - 1

If there is a Road rage, then who all fight? (generally?). Imagine two cars driven by adult drivers. Each car has a woman of similar age as that of the Man. The cars “touch” or “some issue happens”. Who all comes out and fights? Who all are most probable to drive the cars?

(Men are eager to fight, eager to rule, eager for war. Men want to drive. Men want to win)

Random - 2

Heavy metal music artists are all Men. Metallica, Black Sabbath, Motley Crue, Megadeth, Motorhead, AC/DC, Deep Purple, Slayer, Guns & Roses, Led Zeppelin, Aerosmith ….. the list can be in thousands. All these are grown-up Boys, known as Men.

(Men strive for perfection. Men are eager to excel. Men work hard. Men want to win.)
Apart from Marie Curie, only one more woman got Nobel Prize in Physics. (Maria Goeppert Mayer - 1963). So, ... almost all are men.

Random - 4

The best Tabla Players are all Men.

History is all about, which Kings ruled. Kings, their men, and Soldiers went for wars. History is all about wars, fights, and killings by men.

Boys start fighting from school days. Girls do not fight like this

(Men are eager to fight, eager to rule, eager for war. Men want to drive. Men want to win.)
Random - 6

The highest award in Mathematics, the “Fields Medal” is around since decades. Till date only one woman could get that. (Maryam Mirzakhani - 2014). So, ... almost all are men.

Random - 7

Actor is a gender neutral word. Could the movie like “Top Gun” be made with Female actors? The best pilots, astronauts, Fighters are all Men.
In my childhood had seen a movie named “The Tower in Inferno”. In the movie when the tall tower is in fire, women were being saved first, as only one lift was working....

Many decades later another movie is made. A box office hit. “The Titanic”. In this also As the ship is sinking women are being saved. **Men are disposable.** Men may get their turn later...

Movies are not training programs. Movies do not teach people what to do, or not to do. Movies only reflect the prevalent culture. Men are disposable, is the culture in the society. Knowingly, unknowingly, the culture is depicted in Movies, Theaters, Stories, Poems, Rituals, etc. I or you can’t write a story, or make a movie in which after a minor car accident the Male passengers keep seating in the back seat, while the both the women drivers come out of the car and start fighting very bitterly on the road. There has been no story in this world, or no movie made, where after an accident or calamity, **Men are being helped for safety first, and women are told to wait.**
Random - 9

Artists generally follow the prevalent culture of the Society. In paintings, sculptures, stories, poems, movies, cartoon, Caricatures, knowingly / unknowingly, “the prevalent Reality“ is depicted. The opposite will not go well with people. If deliberately “the opposite“ is shown then it may only become a special art, considered as a special mockery.

Random - 10

Men go to “girl / woman’s house” to marry / win, and bring her to his home. That is a sort of winning her. When a boy gets a “Girl-Friend“, generally he and his friends consider that as an achievement. The boy who “ got / won “ a girl-friend feels proud. His male friends feel, jealous, competitive and envious. Millions of stories have been written on these themes. Lakhs of movies show this. Boys / Men go for “bike race“, or say “Car Race“, where the winner “gets“ the most beautiful girl of the college.

(Men want to excel. Men are eager to fight, eager to rule, eager for war. Men want to drive. Men want to win.)

Prithviraj Chauhan ‘ went ` to “pickup “ or “ abduct “ or “ win “ or “ bring “ his love. There was a Hindi movie (hit) song ... “ Pasand ho jaye, to ghar se utha laye “. It is not other way round. Girls do not go to Boy’s house or man’s house to marry. Nor the girls go in a gang to “pick-up “ the boy / man and bring him to their home / place / den.
Random - 11

Rich people; often are very hard working. Successful business men, establish their business (empire), amass lot of wealth, with lot of difficulty. Lots of sacrifice, lots of hard work, gets into this. Rich people’s wives had no contribution in this wealth creation. Women are smart, and successful up to the extent to choose the right/rich man to marry. So generally what happens in case of Divorces? Search the net on “most costly divorces” and you will know. The women;(who had no contribution at all, in setting up the business/empire), often gets in Billions, or several Millions in divorce settlements.

See http://skmclasses.kinja.com/save-the-male-1761788732

It was Boys and Men, who brought the girls/women home. The Laws are biased, completely favoring women. The men are paying for their own mistakes.

See https://zookeepersblog.wordpress.com/biased-laws/

(Man brings the Woman home. When she leaves, takes away her share of big fortune!)

Random - 12

A standardized test of Intelligence will never be possible. It never happened before, nor ever will happen in future; where the IQ test results will be acceptable by all. In the net there are thousands of charts which show that the intelligence scores of girls/women are lesser. Debates of Trillion words, does not improve performance of Girls.
I am not wasting a single second debating or discussing with anyone, on this. I am simply accepting ALL the results. IQ is only one of the variables which is required for success in life. Thousands of books have been written on “Networking Skills”, EQ (Emotional Quotient), Drive, Dedication, Focus, “Tenacity towards the end goal” … etc. In each criteria, and in all together, women (in general) do far worse than men. Bangalore is known as “….. capital of India”. [Fill in the blanks]. The blanks are generally filled as “Software Capital”, “IT Capital”, “Startup Capital”, etc. I am member in several startup eco-systems / groups. I have attended hundreds of meetings, regarding “technology startups”, or “idea startups”. These meetings have very few women. Starting up new companies are all “Men’s Game” / “Men’s business”. Only in Divorce settlements women will take their goodies, due to Biased laws. There is no dedication, towards wealth creation, by women.

Random - 13

Many men, as fathers, very unfortunately treat their daughters as “Princess”. Every “non-performing” woman / wife was “princess daughter” of some loving father. Pampering the girls, in name of “equal opportunity”, or “women empowerment”, have led to nothing.
There can be thousands of more such random examples, where “Bigger Shape / size” of males have influenced our culture, our Society. Let us recall the reasons, that we already learned in standard 10 - 11, Biology text Books. In humans, women have a long gestation period, and also spends many years (almost a decade) to grow, nourish, and stabilize the child. (Million years of habit) Due to survival instinct Males want to inseminate. Boys and Men fight for the “facility (of womb + care)“ the girl / woman may provide. Bigger size for males, has a winning advantage. Whoever wins, gets the “woman / facility” . The male who is of “Bigger Size”, has an advantage to win.... Leading to Natural selection over millions of years. In general “Bigger Males”; the “fighting instinct” in men; have led to wars, and solving tough problems (Mathematics, Physics, Technology, startups of new businesses, Wealth creation, Unreasonable attempts to make things [such as planes], Hard work)

So let us see the IIT-JEE results of girls. Statistics of several years show that there are around 17, (or less than 20) girls in top 1000 ranks, at all India level. Some people will yet not understand the performance, till it is said that ... year after year we have around 980 boys in top 1000 ranks. Generally we see only 4 to 5 girls in top 500. In last 50 years not once any girl topped in IIT-JEE advanced. Forget about Single digit ranks, double digit ranks by girls have been extremely rare. It is all about “good boys“, “hard working“, “focused“, “Bel-esprit“ boys.

In 2015, Only 2.6% of total candidates who qualified are girls (upto around 12,000 rank). while 20% of the Boys, amongst all candidates qualified. The Total number of students who appeared for the exam were around 1.4 million for IIT-JEE main. Subsequently 1.2 lakh (around 120 thousands) appeared for IIT-JEE advanced.

IIT-JEE results and analysis, of many years is given at https://zookeepersblog.wordpress.com/iit-jee-iseet-main-and-advanced-results/

In Bangalore it is rare to see a girl with rank better than 1000 in IIT-JEE advanced. We hardly see 6-7 boys with rank better than 1000. Hardly 2-3 boys get a rank better than 500.

See http://skmclasses.weebly.com/everybody-knows-so-you-should-also-know.html

Thousands of people are exposing the heinous crimes that Motherly Women are doing, or Female Teachers are committing. See https://www.facebook.com/WomenCriminals/
It is extremely unfortunate that the "woman empowerment" has created. This is the kind of society and women we have now. I and many other sensible men hate such women. Be away from such women, be aware of reality.

Mother Admits On Facebook to Sleeping with 15 Yr Old Son, They Have a Baby Together - AlwaysTurningup

Sometimes it hard to believe w From AlwaysTurningup

'Sex with my son is incredible - we're in love and we want a baby'

Ben Ford, who ditched his wife when he met his mother Kim West after 30 years, claims what the couple are doing isn't incest.

mirror.co.uk

Woman sent to jail for rest of her life after raping her four grandchildren is described as the 'most evil person' the judge has ever seen

Edrina Louis rape...

See More

Former Shelbyville ISD teacher who had sex with underage student gets 3 years in prison

After a two-day trial over the weekend, A Shelby County jury was back in the courtroom looking to conclude the trial of a former Shelbyville ISD teacher who had...

KUTV.com | BY CALEB BEARMAN

Woman sent to jail for raping her four grandchildren

A Utah grandmother has been sentenced to four consecutive life terms after being found guilty of the rape of her own grandchildren. Edrina Louis, 51, will spend the rest of her life behind bars.

dailymail.co.uk
The N.C. Chronicles: Eastern Ontario teacher charged with 36 sexual offences

Montgomery's son, Alan Vonn Webb, took the stand and was a key witness in her conviction.

"I want to see her placed somewhere she can never do that to children again," he said.

See More

Woman sentenced to 40 years in prison for raping her children

A 38-year-old mother found guilty of raping her own children learned her fate on Wednesday.

Veena K Sharma / CTV News

Hydrabad woman kills newborn boy as she wanted daughter - Times of India

Having failed to bear a daughter for the third time, a shopkeeper's wife slit the throat of her 2-day-old son with a shaving blade and left him to die in a bed on Tuesday night. Pallavi's first child was a stillborn boy, followed by another boy born five years ago.
In several countries or rather in several regions of the world, family system has collapsed, due to bad nature and naughty acts of women. Particularly in Britain, and America, almost 50% people are alone, lonely, separated, divorced or failed marriages. In 2013, 48% children were born out of wedlock. It was projected that by 2016, more than 51% children will be born, to unmarried mothers. In these developed countries “paternity fraud” by women, are close to 20%. You can see several articles in the net, and in wikipedia etc. This means 1 out of 5 children are calling a wrong man as dad. The lonely, alone “mothers” are frustrated. They see the children as burden. Love in the Society in general is lost, long time ago. The types of “Mothers “ and “Women “ we have now
By now if you have assumed that Indian women are not doing any crime then please become friends with MRA Guri https://www.facebook.com/profile.php?id=100004138754180

He has dedicated his life to expose Indian Criminals
HURT FEMINISM BY DOING NOTHING

Don’t help women
Don’t fix things for women
Don’t support women’s issues
Don’t come to women’s defense
Don’t speak for women
Don’t value women’s feelings
Don’t portray women as victims
Don’t protect women

WITHOUT WHITE KNIGHTS FEMINISM WOULD END TODAY

Don’t even narrate (“Not All Women Are Like That”)

for example from criticism or insults

Professor Subhashish Chattopadhyay

Who pays the most Taxes?
This is why MGTOW exist.

#MGTOW

They can get away with murder.
They get all the rights with no responsibility and Shelters for Homeless women.
They get bail outs and short prison sentence.
They get educational benefits but no violence against kids Act.
They have some support but don’t have any education that fits boys.
They have animal rights and PETA.
They get conjugal visits and a roof.
Paid slaves.
Nothing.
Before we discuss examples and problems let us see the all the formulae

Distance between two points

Here \(QN = QM - NM = y_2 - y_1 \),
\[PN = OM - OL = x_2 - x_1 \]

\[PQ^2 = PN^2 + QN^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 \]

i.e., \[PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]
The image of a point with respect to the line mirror. The image of \(A(x_1, y_1) \) with respect to the line mirror \(ax + by + c = 0 \) be \(B(h, k) \) given by,
\[
\frac{h - x_1}{a} = \frac{k - y_1}{b} = \frac{-2(ax_1 + by_1 + c)}{a^2 + b^2}
\]

The image of a point with respect to \(x \)-axis: Let \(P(x, y) \) be any point and \(P'(x', y') \) its image after reflection in the \(x \)-axis, then
\(x' = x \) and \(y' = -y \), \(\therefore \) \(O' \) is the mid point of \(PP' \)
The image of a point with respect to y-axis: Let $P(x, y)$ be any point and $P'(x', y')$ its image after reflection in the y-axis, then

$$x' = -x$$ and $$y' = y \ (\because \ O' \ is \ the \ mid \ point \ of \ PP')$$

The image of a point with respect to the origin: Let $P(x, y)$ be any point and $P'(x', y')$ be its image after reflection through the origin, then

$$x' = -x$$ and $$y' = -y \ (\because \ O \ is \ the \ mid-point \ of \ PP')$$
The image of a point with respect to the line $y = x$: Let $P(x, y)$ be any point and $P'(x', y')$ be its image after reflection in the line $y = x$, then,

$x' = y$ and $y' = x$ \hspace{1cm} \left(\because \ O' \text{ is the mid-point of } PP'\right)$

The image of a point with respect to the line $y = x \tan \theta$: Let $P(x, y)$ be any point and $P'(x', y')$ be its image after reflection in the line $y = x \tan \theta$, then,

$x' = x \cos 2\theta + y \sin 2\theta$

$y' = x \sin 2\theta - y \cos 2\theta,$ \hspace{1cm} \left(\because \ O' \text{ is the mid-point of } PP'\right)$
A Rhombus is made by distorting a square

All four sides are equal. So AB = BC = CD = DA

Area of a Triangle

The area of a triangle, the coordinates of whose vertices are \((x_1, y_1)\), \((x_2, y_2)\) and \((x_3, y_3)\) is given by
\[
\Delta = \frac{1}{2} \left[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right]
\]

or
\[
\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}
\]

Condition of collinearity of 3 points

Three points \(A(x_1, y_1), B(x_2, y_2),\) and \(C(x_3, y_3)\) are collinear if

i) Area of triangle \(ABC = 0\) i.e.,
\[
\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0
\]

or

ii) \(AB + BC = AC\) (or) \(AC + BC = AB\) (or)
\(AC + AB = BC\)

In some cases a problem can be solved just by observation. Meaning the above determinant need not be evaluated.

The points \((a, b + c), (b, c + a)\) and \((c, a + b)\) are

(a) vertices of an equilateral triangle
(b) concyclic
(c) vertices of a right angled triangle
(d) none of these

\textit{Ans.} (d)

\textbf{Solution} As the given points lie on the line \(x + y = a + b + c,\) they are collinear.
Section formula Internal Division

The coordinates of the point P which divides the line segment joining the points \(A(x_1, y_1)\) and \(B(x_2, y_2)\) internally in the ratio \(m:n\) are given by

\[
P = \left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n} \right)
\]

Section formula External Division can have Two formulae. Depending on from which external side the division is being done

Here the external point \(Q\) is on the side of \(A\)

If \(m\) is the distance from \(A\) then \(m\) gets multiplied to coordinates of opposite point i.e.

\(B(x_2, y_2)\)
The coordinates of the point Q which divides the line segment joining the points A(x₁, y₁) and B(x₂, y₂) externally in the ratio m:n are given by

\[Q = \left(\frac{mx_2 - nx_1}{m-n}, \frac{my_2 - ny_1}{m-n} \right) \]

Note:

i) If P is the mid point of AB, then the coordinate of P is given by \(\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \)

ii) The co-ordinate of any point on AB can be written as \(\left(\frac{\lambda x_2 + x_1}{\lambda + 1}, \frac{\lambda y_2 + y_1}{\lambda + 1} \right) \)

Coordinates of the centroid, in-centre and ex-centres of a triangle

Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the three vertices of a triangle ABC.

i) Centroid of a triangle
Centroid is the point of intersection of medians, whose coordinates are given by

\[G = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) \]

ii) In-centre of a triangle

In-centre is the point of intersection of internal angular bisectors, whose coordinates are given by

\[I = \left(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c} \right) \]

where \(a, b, c\) are the lengths of the sides \(BC, CA, AB\) respectively.

iii) Ex-centres of a triangle

The point of intersection \(I_1\) of the external angular bisectors of \(\angle B\) and \(\angle C\) is one of the excentres of the triangle \(ABC\) and is given by

\[I_1 = \left(\frac{-ax_1 + bx_2 + cx_3}{-a + b + c}, \frac{-ay_1 + by_2 + cy_3}{-a + b + c} \right) \]

similarly the other ex-centres are given by

\[I_2 = \left(\frac{ax_1 - bx_2 + cx_3}{a - b + c}, \frac{ay_1 - by_2 + cy_3}{a - b + c} \right) \]

and

\[I_3 = \left(\frac{ax_1 + bx_2 - cx_3}{a + b - c}, \frac{ay_1 + by_2 - cy_3}{a + b - c} \right) \]

where \(a, b, c\) are the lengths of the sides \(BC, CA, AB\) respectively.
In some problems we find the Area pretty differently

The area of the triangle formed by the tangent to the curve \(y = \frac{8}{4 + x^2} \) at \(x = 2 \) and the coordinate axes is

- (a) 2 sq. units
- (b) \(\frac{7}{2} \) sq. units
- (c) 4 sq. units
- (d) 8 sq. units.

Solution

(c) From \(y = \frac{8}{4 + x^2} \),

when \(x = 2, y = \frac{8}{4 + 4} = 1 \)

Also, \(\frac{dy}{dx} = -\frac{8}{(4 + x^2)^2} (2x) \) \(\Rightarrow \left[\frac{dy}{dx} \right]_{(2, 1)} = -\frac{1}{2} \)

\(\therefore \) equation of tangent is

\(y - 1 = -\frac{1}{2} (x - 2) \) or \(x + 2y - 4 = 0 \) \(\ldots (1) \)

Its intercepts on axes are (by putting \(y = 0 \) and \(x = 0 \) respectively) \(a = 4, b = 2 \)

\(\therefore \) Area \(= \frac{1}{2} ab = \frac{1}{2} \times 4 \times 2 = 4 \) sq. units.
Perpendicular Lines

If there is a line whose slope is m (assuming this line NOT parallel to x-axis) then the slope of the line which is perpendicular to this will be $-1/m$.

Meaning, product of the slopes of lines that are perpendicular is -1.

If one of the lines is parallel to x-axis its slope is 0 while the line perpendicular will have a slope of infinity (∞). This line is parallel to y-axis. Product of $0 \times \infty$ is undefined. In this case we do not apply the -1 as product rule.

Equation of the line passing through two points

The equation of a line passing through two points (x_1, y_1) and (x_2, y_2) is

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$
The intercept form of a line

- Suppose a line L makes x-intercept a and y-intercept b on the axes. Obviously L meets x-axis at the point $(a, 0)$ and y-axis at the point $(0, b)$.

By two-point form of the equation of the line, we have

$$y - 0 = \frac{b - 0}{0 - a} (x - a)$$

Or

$$ay = -bx + ab$$

i.e.,

$$\frac{x}{a} + \frac{y}{b} = 1$$

Thus, equation of the line making intercepts a and b on x- and y-axis, respectively, is

$$\frac{x}{a} + \frac{y}{b} = 1$$

Question

Through the point $P(\alpha, \beta)$, where $\alpha \beta > 0$ the straight line $\frac{x}{a} + \frac{y}{b} = 1$ is drawn so as to form with coordinate axes a triangle of area S. If $ab > 0$, then the least value of S is

(a) $\alpha \beta$
(b) $2\alpha \beta$
(c) $4\alpha \beta$
(d) none of these
(b). The equation of the given line is
\[\frac{x}{a} + \frac{y}{b} = 1 \]
...(1)

This line cuts \(x \)-axis and \(y \)-axis at \(A (a, 0) \) and \(B (0, b) \) respectively.

Since area of \(\triangle OAB = S \)
\[
\therefore \left| \frac{1}{2}ab \right| = S \text{ or } ab = 2S \quad (\because \ ab > 0) \]
...(2)

Since the line (1) passes through the point \(P (\alpha, \beta) \)
\[
\therefore \frac{\alpha}{a} + \frac{\beta}{b} = 1 \quad \text{or} \quad \frac{\alpha}{a} + \frac{a\beta}{2S} = 1 \\
\]
[Using (2)]

or
\[
\frac{a^2\beta - 2aS + 2\alpha S}{a} = 0. \\
\]
Since \(a \) is real, \(\therefore 4S^2 - 8\alpha\beta S \geq 0 \\
\]
or \(4S^2 \geq 8\alpha\beta S \) or \(S \geq 2\alpha\beta \)
\[
(\because \ S = \frac{1}{2}ab > 0 \text{ as } ab > 0) \\
\]
Hence the least value of \(S = 2\alpha\beta \).
i) The equation of a line parallel to a given line \(ax + by + c = 0 \) is \(ax + by + \lambda = 0 \), where \(\lambda \) is constant.

ii) The equation of a line perpendicular to a given line \(ax + by + c = 0 \) is \(bx - ay + \lambda = 0 \), where \(\lambda \) is constant.

iii) The slope of the line \(ax + by + c = 0 \) is given by

\[m = \frac{-a}{b} \]

iv) For intercept on x-axis, put \(y = 0 \). For intercept on y-axis, put \(x = 0 \).

v) Angle \(\theta \) between the lines \(a_1x + b_1y + c_1 = 0 \), \(a_2x + b_2y + c_2 = 0 \) is given by

\[\tan \theta = \left| \frac{a_2b_1 - a_1b_2}{a_1a_2 + b_1b_2} \right| \]

vi) The lines \(a_1x + b_1y + c_1 = 0 \), \(a_2x + b_2y + c_2 = 0 \) are

a) Coincident if \(\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \)

b) Parallel if \(\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \)

c) intersecting if \(\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \)

d) Perpendicular if \(a_1a_2 + b_1b_2 = 0 \)
Distance of a point from a line

The length of the perpendicular from a point (x_1, y_1) to a line $ax + by + c = 0$ is given by

$$PN = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

Note:
The length of the perpendicular from the origin to the line $ax + by + c = 0$ is $\frac{|c|}{\sqrt{a^2 + b^2}}$
The distance between the parallel lines $ax + by + c_1 = 0$ and $ax + by + c_2 = 0$ is given by
\[
\frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}}.
\]

The two points (x_1, y_1) and (x_2, y_2) are on the same (or opposite) sides of the straight line $ax + by + c = 0$ according to the quantities $ax_1 + by_1 + c$ and $ax_2 + by_2 + c$ having same (or opposite) signs.

The three lines $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$, and $a_3x + b_3y + c_3 = 0$ are concurrent (intersect at a point) if and only if
\[
\begin{vmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{vmatrix} = 0.
\]
The equations of the straight lines which pass through a given point \((x_1, y_1)\) and make a given angle \(\alpha\) with the given straight line \(y = mx + c\) are:

\[
y - y_1 = \frac{m \pm \tan \alpha}{1 \mp m \tan \alpha} (x - x_1)
\]

The angle between the lines \(x \cos \alpha_1 + y \sin \alpha_1 = P_1\) and \(x \cos \alpha_2 + y \sin \alpha_2 = P_2\) is \(\alpha_1 - \alpha_2\).
Equation of Internal and External bisectors of 2 Lines

The equation of the bisectors of the angles between the lines \(a_1x + b_1y + c_1 = 0\) and \(a_2x + b_2y + c_2 = 0\) is given by

\[
\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \pm \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}
\]

Bisector of the angle containing the origin

If \(c_1, c_2\) are positive, then the equation of the bisector of the angle containing the origin is

\[
\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}
\]
Bisector of Acute and Obtuse angle between lines

\[i) \quad \text{If } c_1, c_2 \text{ are positive and if } a_1a_2 + b_1b_2 > 0, \text{ then} \]
\[\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \pm \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}} \text{ is the obtuse angle bisector and} \]
\[\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \mp \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}} \text{ is the acute angle bisector.} \]

\[ii) \quad \text{If } c_1, c_2 \text{ are positive and if } a_1a_2 + b_1b_2 < 0, \text{ then} \]
\[\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \pm \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}} \text{ is the acute angle bisector and} \]
\[\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \mp \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}} \text{ is the obtuse angle bisector.} \]

If \(c_1, c_2 \) are positive and \(a_1a_2 + b_1b_2 > 0 \), then the origin lies in the obtuse angle and the '+' sign gives the bisector of the obtuse angle.
If \(a_1a_2 + b_1b_2 < 0 \), then the origin lies in the acute angle and the '+' sign gives the bisector of acute angle.
Coordinates of Centroid, Orthocenter, Circumcenter of a Triangle

Centroid: The point of intersection of the medians of a triangle is called its centroid. It divides the median in the ratio 2:1.

If \((x_1, y_1), (x_2, y_2),\) and \((x_3, y_3)\) are the vertices of a triangle, then the coordinates of its centroid are

\[
\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)
\]
Orthocentre

The point of intersection of the altitudes of a triangle is called its orthocentre.

To determine the orthocentre, first we find equations of line passing through vertices and perpendicular to the opposite sides. Solving two of these three equations we get the co-ordinates of orthocentre.

If angles A, B and C and vertices $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ of a $\triangle ABC$ are given, then orthocentre of $\triangle ABC$ is given by

$$
\left(\frac{x_1 \tan A + x_2 \tan B + x_3 \tan C}{\tan A + \tan B + \tan C}, \frac{y_1 \tan A + y_2 \tan B + y_3 \tan C}{\tan A + \tan B + \tan C}\right)
$$
If any two lines out of three lines, i.e., \(AB, BC \) and \(CA \) are perpendicular, then orthocentre is the point of intersection of two perpendicular lines.

The orthocentre of the triangle with vertices \((0, 0), (x_1, y_1)\) and \((x_2, y_2)\) is

\[
\left\{ \begin{align*}
(y_1 - y_2) \left[\frac{x_1 x_2 - y_1 y_2}{x_2 y_1 - x_1 y_2} \right] \\
(x_1 - x_2) \left[\frac{x_1 x_2 + y_1 y_2}{x_1 y_2 - x_2 y_1} \right]
\end{align*} \right.
\]

Question on Orthocenter

The orthocentre of the triangle formed by the lines

\(xy = 0 \) and \(2x + 3y - 5 = 0 \) is

(a) (2, 3) \hspace{1cm} (b) (3, 2) \hspace{1cm} (c) (0, 0) \hspace{1cm} (d) (5, -5)

Ans. (c)

Solution The given triangle is right angled at \((0, 0)\) which is therefore the orthocentre of the triangle.

Circumcentre

The point of intersection of the perpendicular bisectors of the sides of a triangle is called its circum-centre. It is equidistant from the vertices of a triangle.
Note:
The circumcentre O, centroid G and orthocentre O' of a triangle ABC are collinear such that G divides O'O in the ratio 2:1 i.e., O’G:OG=2:1

Question

If the circumcentre of a triangle lies at the origin and the centroid is the middle point of the line joining the points \((a^2 + 1, a^2 + 1)\) and \((2a, -2a)\); then the orthocentre lies on the line

(a) \(y = (a^2 + 1)x\)
(b) \(y = 2ax\)
(c) \(x + y = 0\)
(d) \((a - 1)^2 x - (a + 1)^2 y = 0\)

Ans. (d)

Solution We know from geometry that the circumcentre, centroid and orthocentre of a triangle lie on a line. So the orthocentre of the triangle lies on the line joining the circumcentre \((0, 0)\) and the centroid \(\left(\frac{(a+1)^2}{2}, \frac{(a-1)^2}{2}\right)\)

i.e. \(\frac{(a+1)^2}{2} y = \frac{(a-1)^2}{2} x\)

or \((a - 1)^2 x - (a + 1)^2 y = 0\).
Question

If the equations of the sides of a triangle are \(x + y = 2 \),
\(y = x \) and \(\sqrt{3}y + x = 0 \), then which of the following is
an exterior point of the triangle?

(a) orthocentre (b) incentre
(c) centroid (d) none of these

Solution

(a). The lines \(y = x \) and \(\sqrt{3}y + x = 0 \) are inclined at 45°
and 150°, respectively, with the positive direction of x-axis. So,
the angle between the two lines is an obtuse angle. Therefore,
orthocentre lies outside the given triangle, whereas incentre
and centroid lie within the triangle (In any triangle, the centroid
and the incentre lie within the triangle).

Question

The equations to the sides of a triangle are \(x - 3y = 0 \),
\(4x + 3y = 5 \) and \(3x + y = 0 \). The line \(3x - 4y = 0 \) passes through the
(a) incentre (b) centroid
(c) circumcentre (d) orthocentre of the triangle

Ans. (d)

Solution Two sides \(x - 3y = 0 \) and \(3x + y = 0 \) of the triangle being
perpendicular to each other, the triangle is right angled at the origin, the point
of intersection of these sides. So that origin is the orthocentre of the triangle
and the line \(3x - 4y = 0 \) passes through this orthocentre.
Ex-Centres of a Triangle

A circle touches one side outside the triangle and the other two extended sides then circle is known as excircle.

Let ABC be a triangle then there are three excircles, with three excentres I_1, I_2, I_3 opposite to vertices A, B and C respectively.

If the vertices of triangle are $A(x_1, y_1), B(x_2, y_2)$ and $C(x_3, y_3)$ then

$I_1 = \left(\frac{-ax_1 + bx_2 + cx_3}{-a + b + c}, \frac{-ay_1 + by_2 + cy_3}{-a + b + c} \right)$

$I_2 = \left(\frac{ax_1 - bx_2 + cx_3}{a - b + c}, \frac{ay_1 - by_2 + cy_3}{a - b + c} \right)$

$I_3 = \left(\frac{ax_1 + bx_2 - cx_3}{a + b - c}, \frac{ay_1 + by_2 - cy_3}{a + b - c} \right)$

Family of lines through the intersection of two given lines

The equation of family of lines passing through the intersection of the lines

$L_1 = a_1x + b_1y + c_1 = 0$ and $L_2 = a_2x + b_2y + c_2 = 0$ is

$(a_1x + b_1y + c_1) + \lambda (a_2x + b_2y + c_2) = 0$, where λ is a parameter i.e., $L_1 + \lambda L_2 = 0$.
Homogeneous equation of second degree in x and y

A general homogeneous equation of degree 2 always represent two straight lines, real or imaginary, through the origin. Conversely, the equal of a pair of lines through origin is a second degree homogeneous equation in x and y.

The equation of the form $ax^2 + 2hxy + by^2 = 0$ is called a homogeneous equation of degree 2 in x and y, where a, b, h are constants.

Let $ax^2 + 2hxy + by^2 = 0$ \hspace{1cm} \ldots(1)

$b\left(\frac{y}{x}\right)^2 + 2h\left(\frac{y}{x}\right) + a = 0$

The general equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of Straight lines only if

$abc + 2fg h - af^2 - bg^2 - ch^2 = 0$ \hspace{1cm} i.e., iff $\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$

For easy remembering note that the first row of the Determinant is coeffs of x terms

$(a)x^2 + 2(h)xy \ldots + 2 (g) x \ldots$

Similarly the second row is made of coeffs of y terms. i.e.

$2 (h) xy + (b)y^2 + 2 (f) y \ldots$

The last row of the determinant is the last 3 constants of last 3 terms. i.e. g, f, and c
Equation of the lines joining the origin to the points of intersection of a line and a conic.

Let \(L = lx + my + n = 0 \)
and \(S = ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 \)
be the equations of a line and a conic, respectively. Writing the equation of the line as \(\frac{lx + my}{-n} = 1 \) and making \(S = 0 \) homogeneous with its help, we get
\[
S = ax^2 + 2hxy + by^2 + 2(gx + fy) \left(\frac{lx + my}{-n} \right) + c \left(\frac{lx + my}{-n} \right)^2 = 0
\]
which being a homogeneous equation of second degree, represents a pair of straight lines through the origin and passing through the points common to \(S = 0 \) and \(L = 0 \).

Equation of the pair of lines through the origin perpendicular to the pair of lines \(ax^2 + 2hxy + by^2 = 0 \) is \(bx^2 - 2hxy + ay^2 = 0 \).

Question

If the slope of one of the lines represented by \(ax^2 - 6xy + y^2 = 0 \) is square of the other, then

(a) \(a = 1 \)
(b) \(a = 2 \)
(c) \(a = 4 \)
(d) \(a = 8 \)

Ans. (d)

Solution Let the lines represented by the given equation be \(y = mx \) and \(y = m^2x \), then
\[
m + m^2 = 6 \text{ and } m^3 = a
\]
\[
\Rightarrow \quad m = 2 \text{ or } -3
\]
and so \(a = 8 \text{ or } -27 \)
If the pairs of lines $x^2 + 2xy + ay^2 = 0$ and $ax^2 + 2xy + y^2 = 0$ have exactly one line in common then the joint equation of the other two lines is given by

(a) $3x^2 + 8xy - 3y^2 = 0$

(b) $3x^2 + 10xy + 3y^2 = 0$

(c) $y^2 + 2xy - 3x^2 = 0$

(d) $x^2 + 2xy - 3y^2 = 0$

Ans. (b)

Solution Let $y = mx$ be a line common to the given pairs of lines, then

$am^2 + 2am + 1 = 0$ and $m^2 + 2m + a = 0 \Rightarrow \frac{m^2}{2(1-a)} = \frac{m}{a^2-1} = \frac{1}{2(1-a)}$

$\Rightarrow m^2 = 1$ and $m = -\frac{a+1}{2} \Rightarrow (a+1)^2 = 4 \Rightarrow a = 1$ or -3

But for $a = 1$, the two pairs have both the lines common, so $a = -3$ and the slope m of the line common to both the pairs is 1.

Now $x^2 + 2xy + ay^2 = x^2 + 2xy - 3y^2 = (x-y)(x+3y)$

and $ax^2 + 2xy + y^2 = -3x^2 + 2xy + y^2 = -(x-y)(3x+y)$

So the equation of the required lines is

$(x + 3y) (3x + y) = 0 \Rightarrow 3x^2 + 10xy + 3y^2 = 0.$
Question on Locus

If \(P (1, 0) \), \(Q (-1, 0) \) and \(R (2, 0) \) are three given points. The point \(S \) satisfies the relation \(SQ^2 + SR^2 = 2SP^2 \). The locus of \(S \) meets \(PQ \) at the point

(a) \((0, 0)\)
(b) \((2/3, 0)\)
(c) \((-3/2, 0)\)
(d) \((0, -2/3)\)

\[\text{Ans. (c)} \]

Solution Let \(S \) be the point \((x, y)\)

then \((x + 1)^2 + y^2 + (x - 2)^2 + y^2 = 2[(x - 1)^2 + y^2] \)

\[\Rightarrow 2x + 3 = 0, \text{ the locus of } S \text{ and equation of } PQ \text{ is } y = 0. \]

So the required points is \((-3/2, 0)\).

Formulae related to circles

The line \(y = mx + c \) intersects the circle \(x^2 + y^2 = a^2 \) at two distinct points if the length of the perpendicular from the centre is less than the radius of the circle.

\[\text{ie., } \left| \frac{c}{\sqrt{1 + m^2}} \right| < a \]
The line does not intersect the circle \(x^2 + y^2 = a^2 \) if the length of the perpendicular, from the centre is greater than the radius of the circle.

\[
\left| \frac{c}{\sqrt{1+m^2}} \right| > a
\]

(iii) The length of the intercept cut off from a line \(y = mx + c \) by a circle \(x^2 + y^2 = a^2 \) is
Question on Tangent

The point on the curve \(y = 6x - x^2 \) where the tangent is parallel to x-axis is

\((a) \) \((0, 0)\)
\((b) \) \((2, 8)\)
\((c) \) \((6, 0)\)
\((d) \) \((3, 9)\).

Solution

\[
(d) \quad \frac{dy}{dx} = 6 - 2x
\]

\[
\therefore \quad \frac{dy}{dx} = 0 \implies x = 3.
\]

\[
\therefore \quad y = 18 - 9 = 9 \quad \therefore \quad \text{Point is} \ (3, 9).
\]
Question

For the curve \(x = t^2 - 1, \ y = t^2 - t \), the tangent line is perpendicular to \(x \)-axis, where

(a) \(t = 0 \)

(b) \(t \to \infty \)

(c) \(t = \frac{1}{\sqrt{3}} \)

(d) \(t = -\frac{1}{\sqrt{3}} \).

Solution

(a) \(\frac{dx}{dt} = 2t \),

Tangent is perpendicular to \(x \)-axis if \(\frac{dx}{dt} = 0 \iff t = 0 \).

Question

The point on the curve \(y^2 = x \), the tangent at which makes an angle of 45° with \(x \)-axis will be given by

(a) \(\left(\frac{1}{2}, \frac{1}{4} \right) \)

(b) \(\left(\frac{1}{2}, \frac{1}{2} \right) \)

(c) \((2, 4) \)

(d) \(\left(\frac{1}{4}, \frac{1}{2} \right) \).

Solution

(d) \(y^2 = x \Rightarrow 2y \frac{dy}{dx} = 1 \)

\[\Rightarrow \frac{dy}{dx} = \frac{1}{2y} = \tan 45^\circ = 1 \ (\text{given}) \]

\[\Rightarrow y = \frac{1}{2} \Rightarrow x = \frac{1}{4} \]

\[\therefore \text{Point is} \ \left(\frac{1}{4}, \frac{1}{2} \right). \]
Question

If tangent to the curve \(x = at^2, \ y = 2at \) is perpendicular to \(x \)-axis then its point of contact is

(a) \((a, a)\)
(b) \((0, a)\)
(c) \((a, 0)\)
(d) \((0, 0)\).

Solution

\[
\frac{dx}{dt} = 2at, \quad \frac{dy}{dt} = 2a \Rightarrow \frac{dy}{dx} = \frac{2a}{2at} = \frac{1}{t}
\]

\[
\Rightarrow \frac{1}{t} = \infty \Rightarrow t = 0 \Rightarrow \text{Point is } (0, 0).
\]

Equation of the circle when the end points of a diameter are given

Let \(A(x_1, y_1)\) and \(B(x_2, y_2)\) be the end points of a diameter of circle and let \(P\) be any point on circle.
Now, since the angle subtended at the point P in the semicircle APB is a right angle.

\[m_1 m_2 = -1 \quad (m_1 = \text{slope of AP, } m_2 = \text{slope of BP}) \]

\[
\frac{y - y_1}{x - x_1} \cdot \frac{y - y_2}{x - x_2} = -1
\]

ie., \((x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0\)

Condition for two intersecting circles to be orthogonal

Definition

Two intersecting circles are said to cut each other orthogonally when the tangents at the point of intersection of the two circles are at right angles.

Let the circles

\[S_1 = x^2 + y^2 + 2g_1x + 2f_1y + C_1 = 0 \text{ and } S_2 = x^2 + y^2 + 2g_2x + 2f_2y + C_2 = 0 \]
intersect orthogonally, then \(\angle C_1PC_2 = 90^\circ \)
ie., \(\triangle C_1PC_2 \) is right angled
\[
\therefore\ C_1C_2^2 = C_1P^2 + C_2P^2
\]
\[
(g_1 - g_2)^2 + (f_1 - f_2)^2 = (g_1^2 + f_1^2 - c_1) + (g_2^2 + f_2^2 - c_2)
\]
\[
\Rightarrow 2g_1g_2 + 2f_1f_2 = c_1 + c_2\] is the required condition that \(S_1 \) and \(S_2 \) intersect orthogonally.
Some important results

i) The equation of chord joining two points \(\theta_1 \) and \(\theta_2 \) on the circle \(x^2 + y^2 + 2gx + 2fy + c = 0 \) is

\[
(x + g) \cos \left(\frac{\theta_1 + \theta_2}{2} \right) + (y + f) \sin \left(\frac{\theta_1 + \theta_2}{2} \right) = r
\]

\[
\cos \left(\frac{\theta_1 - \theta_2}{2} \right), \text{ where } r \text{ is the radius of the circle.}
\]

ii) The equation of the tangent at \(P(\theta) \) on the circle \(x^2 + y^2 + 2gx + 2fy + c = 0 \) is \((x + g) \cos \theta + (y + f) \sin \theta = \sqrt{g^2 + f^2 - c} \)

iii) The locus of the point of intersection of two tangents drawn to the circle \(x^2 + y^2 = a^2 \) which makes an constant angle \(\alpha \) to each other is \(x^2 + y^2 - 2a^2 = 4a^2(x^2 + y^2 - a^2)\cot^2 \alpha \).

Question

The equation of tangent to the circle \(x^2 + y^2 + 6x + 4y - 12 = 0 \) at \((6,2)\) is

a) \(4x - 9y - 6 = 0 \)

b) \(9x + 4y + 12 = 0 \)

b) \(3x - 9y = 0 \)

d) \(2x - 3y = 6 \)

Ans (b)

Note:

The equation of tangent at \((x_1, y_1)\) is

\[xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0\]

thus the equation of tangent at \((6,2)\) is

\[6x + 2y + 3(x+6) + 2(y+2) - 12 = 0\]

i.e., \(9x + 4y + 12 = 0\).
Question

The line \(y = m(x - a) + a\sqrt{1 + m^2} \) touches the circle \(x^2 + y^2 = 2ax \)

a) for only two real values of \(m \)

b) for only one real value of \(m \)

c) for no real value of \(m \)

d) for all real values of \(m \)

Ans (d)

The centre and radius of the circle \(x^2 + y^2 = 2ax \) are \((a, 0)\) and \(a\) respectively.

The length of perpendicular from \((a, 0)\) to the line \(y - mx + am - a\sqrt{1 + m^2} = 0 \) is

\[
CP = \frac{|0 - ma + am - a\sqrt{1 + m^2}|}{\sqrt{1 + m^2}} = a
\]

since the distance from centre to the line is equal to the radius the line touches the circle for all real values of \(m \).
Question on Angle of intersection

The angle of intersection of the curves \(y = x^2 \) and \(6y = 7 - x^3 \) at \((1, 1)\) is

(a) \(\frac{\pi}{4} \)
(b) \(\frac{\pi}{3} \)
(c) \(\frac{\pi}{2} \)
(d) None of these.

Solution

(c) \(y = x^2 \Rightarrow \frac{dy}{dx} = 2x \Rightarrow m_1 = 2 \)

\(6y = 7 - x^3 \Rightarrow \frac{dy}{dx} = \frac{1}{2} \Rightarrow m_2 = \frac{1}{2} \)

\(\therefore \quad m_1 m_2 = -1 \text{ at } (1, 1) \)

\(\Rightarrow \quad \theta = \frac{\pi}{2} \).

Question

If \(a, x_1, x_2 \) are in G.P. with common ratio \(r \), and \(b, y_1, y_2 \) are in G.P. with common ratio \(s \) where \(s - r = 2 \), then the area of the triangle with vertices \((a, b), (x_1, y_1)\) and \((x_2, y_2)\) is

(a) \(\frac{1}{2} ab \left(r^2 - 1 \right) \)
(b) \(ab \left(r^2 - s^2 \right) \)
(c) \(ab \left(s^2 - 1 \right) \)
(d) \(abrs \)

Ans. (a)

Solution

Area of the triangle

\[
= \frac{1}{2} \begin{vmatrix} a & b & 1 \\ ar & bs & 1 \\ ar^2 & bs^2 & 1 \end{vmatrix} = \frac{1}{2} \left| ab (r-1)(s-1)(s-r) \right| = \left| ab (r^2 - 1) \right|
\]
Question

Let \(S \equiv x^2 + y^2 -4x + 6y - 12 = 0 \) and \(P = (-13, 17) \) and consider the statements

A: The nearest point on \(S \) from \(P \) is \((-1, 1)\).
B: The farthest point on \(S \) from \(P \) is \((5, -7)\).

then

a) only statement A is true
b) only statement B is true
c) both the statements A and B are true
d) neither statement A nor statement B is true

Ans (c)

Here centre, \(C = (2, -3) \)
radius

\[r = \sqrt{4 + 9 + 12} = 5 \]

\[CP = \sqrt{(2 + 13)^2 + (-3 - 17)^2} = \sqrt{625} = 25 > r \]

\[\Rightarrow P \text{ lies outside the circle.} \]

let A, B be the nearest and farthest points on the circle from P
\[\therefore PA + AC = CP \Rightarrow PA + 5 = 25 \Rightarrow PA = 20 \]

Also
\[PB = PC + CB \Rightarrow PB = 25 + 5 = 30 \]

Now A divides PC in the ratio
\[PA:AC = 20:5 = 4:1 \]

\[\Rightarrow A = \left(\frac{4(2) + 1(-13)}{4 + 1}, \frac{4(-13) + 1(17)}{4 + 1} \right) \]

\[= (1, 1) \]

Now B divides PC in the ratio PB : BC = 30:5 = 6:1 externally
\[\therefore B = \left(\frac{6(2) - 1(-13)}{6 - 1}, \frac{6(-3) - 1(17)}{6 - 1} \right) \]

\[= (5, -7) \]
ELLIPSE

An ellipse is the locus of a point which moves in a plane so that the ratio of its distance from a fixed point (called focus) and a fixed line (called directrix) is a constant which is less than one. This ratio is called eccentricity and is denoted by e. For an ellipse, $e < 1$.

Let S be the focus, QN be the directrix and P be any point on the ellipse. Then, by definition, $\frac{PS}{PN} = e$ or $PS = e \cdot PN$, $e < 1$, where PN is the length of the perpendicular from P on the directrix QN.

An alternate definition An ellipse is the locus of a point that moves in such a way that the sum of its distances from two fixed points (called foci) is constant.
EQUATION OF AN ELLIPSE IN STANDARD FORM

The standard form of the equation of an ellipse is:

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad (a > b), \]

where \(a\) and \(b\) are constants.

SOME TERMS AND PROPERTIES RELATED TO AN ELLIPSE

A sketch of the locus of a moving point satisfying the equation

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad (a > b), \]

has been shown in the figure given above.
1. **Symmetry**

 (a) On replacing y by $-y$, the above equation remains unchanged. So, the curve is symmetrical about x-axis

 (b) On replacing x by $-x$, the above equation remains unchanged. So, the curve is symmetrical about y-axis

2. **Foci** If S and S' are the two foci of the ellipse and their coordinates are $(ae, 0)$ and $(-ae, 0)$ respectively, then distance between foci is given by

 $$SS' = 2ae.$$

3. **Directrices** If ZM and $Z'M'$ are the two directrices of the ellipse and their equations are $x = \frac{a}{e}$ and $x = -\frac{a}{e}$ respectively, then the distance between directrices is given by

 $$ZZ' = \frac{2a}{e}.$$
4. Axes The lines AA' and BB' are called the major axis and minor axis respectively of the ellipse.

The length of major axis $= AA' = 2a$

The length of minor axis $= BB' = 2b$

5. Centre The point of intersection C of the axes of the ellipse is called the centre of the ellipse. All chords, passing through C are bisected at C.

6. Vertices The end points A and A' of the major axis are known as the vertices of the ellipse

$A = (a, 0)$ and $A' = (-a, 0)$

Remember: The vertex divides the join of focus and the point of intersection of directrix with axis internally and externally the ratio $e : 1$.

7. Focal chord A chord of the ellipse passing through its focus is called a focal chord.

8. Ordinate and double ordinate Let P be a point on the ellipse. From P, draw $PN \perp AA'$ (major axis of the ellipse) and produce PN to meet the ellipse at P'. Then PN is called an ordinate and PNP' is called the double ordinate of the point P.

9. Latus rectum If LL' and NN' are the latus rectum of the ellipse, then these lines are \perp to the major axis AA', passing through the foci S and S' respectively.

$L = \left(ae, \frac{b^2}{a} \right), \quad L' = \left(ae, -\frac{b^2}{a} \right),$

$N = \left(-ae, \frac{b^2}{a} \right), \quad N' = \left(-ae, -\frac{b^2}{a} \right)$

Length of latus rectum $= LL' = \frac{2b^2}{a} = NN'$

10. By definition, $SP = ePM = e \left(\frac{a}{e} - x \right) = a - ex$

and $S'P = e \left(\frac{a}{e} + x \right) = a + ex$.

This implies that distances of any point $P(x, y)$ lying on the ellipse from foci are : $(a - ex)$ and $(a + ex)$. In other words
i.e., sum of distances of any point $P(x, y)$ lying on the ellipse from foci is constant.

11. **Eccentricity of the ellipse** Since, $SP = ePM$, therefore,

$$SP^2 = e^2PM^2$$

or

$$\left(x - ae\right)^2 + \left(y - 0\right)^2 = e^2\left(\frac{a}{e} - x\right)^2$$

$$x^2 + a^2e^2 - 2ae x + y^2 = a^2 - 2ae x + e^2x^2$$

$$x^2\left(1 - e^2\right) + y^2 = a^2\left(1 - e^2\right)$$

$$\frac{x^2}{a^2} + \frac{y^2}{a^2\left(1 - e^2\right)} = 1.$$

On comparing with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, we get

$$b^2 = a^2\left(1 - e^2\right)$$

or

$$e = \sqrt{1 - \frac{b^2}{a^2}}.$$

12. **Auxiliary circle** The circle drawn on major axis AA' as diameter is known as the Auxiliary circle.

Let the equation of the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Then the equation of its auxiliary circle is:

$$x^2 + y^2 = a^2.$$
Let \(Q \) be a point on an auxiliary circle so that \(QM \), perpendicular to major axis meets the ellipse at \(P \). The points \(P \) and \(Q \) are called as corresponding points on the ellipse and auxiliary circle respectively.

The angle \(\theta \) is known as eccentric angle of the point \(P \) on the ellipse.

It may be noted that the \(CQ \) and not \(CP \) is inclined at \(\theta \) with \(x \)-axis.

13. **Parametric equation of the ellipse** The coordinates \(x = a \cos \theta \) and \(y = b \sin \theta \) satisfy the equation

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\]

for all real values of \(\theta \). Thus, \(x = a \cos \theta, y = b \sin \theta \) are the parametric equations of the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), where the parameter \(0 \leq \theta < 2\pi \).

Hence the coordinates of any point on the ellipse

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\]

may be taken as \((a \cos \theta, b \sin \theta)\). This point is also called the point „\(\theta „\).

The angle \(\theta \) is called the eccentric angle of the point \((a \cos \theta, b \sin \theta)\) on the ellipse.

14. **Equation of Chord** The equation of the chord joining the points \(P = (a \cos \theta_1, b \sin \theta_1) \)
and \(Q = (a \cos \theta_2, b \sin \theta_2) \) is

\[
\frac{x}{a} \cos \left(\frac{\theta_1 + \theta_2}{2}\right) + \frac{y}{b} \sin \left(\frac{\theta_1 + \theta_2}{2}\right) = \cos \left(\frac{\theta_1 - \theta_2}{2}\right).
\]
Remember: If the centre of the ellipse lies at \((h, k)\) and the axes are parallel to the coordinate axes, then the equation of the ellipse is

\[
\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1
\]

POSITION OF A POINT WITH RESPECT TO AN ELLIPSE

The point \(P(x_1, y_1)\) lies outside, on or inside the ellipse

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\]

according as \(\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - 1 > 0, = 0\) or \(< 0\).

Intersection of line and an Ellipse

The line \(y = mx + c\) intersects the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) in two distinct points if \(a^2m^2 + b^2 > c^2\), in one point if \(c^2 = a^2m^2 + b^2\) and does not intersect if \(a^2m^2 + b^2 < c^2\).

CONDITION FOR TANGENCY AND POINTS OF CONTACT

The condition for the line \(y = mx + c\) to be a tangent to the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) is that \(c^2 = a^2m^2 + b^2\) and the coordinates of the points of contact are

\[
\left(\pm \frac{a^2m}{\sqrt{a^2m^2 + b^2}}, \pm \frac{b^2}{\sqrt{a^2m^2 + b^2}}\right)
\]

Two standard forms of the ellipse
Standard Equation

<table>
<thead>
<tr>
<th>Standard Equation</th>
<th>Standard Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1] (Horizontal Form of an Ellipse)</td>
<td>[\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1] (Vertical Form of an Ellipse)</td>
</tr>
</tbody>
</table>

Shape of the Ellipse

<table>
<thead>
<tr>
<th>Centre</th>
<th>(0, 0)</th>
<th>(0, 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation of major axis</td>
<td>(y = 0)</td>
<td>(x = 0)</td>
</tr>
<tr>
<td>Equation of minor axis</td>
<td>(x = 0)</td>
<td>(y = 0)</td>
</tr>
<tr>
<td>Length of major axis</td>
<td>(2a)</td>
<td>(2a)</td>
</tr>
<tr>
<td>Length of minor axis</td>
<td>(2b)</td>
<td>(2b)</td>
</tr>
<tr>
<td>Foci</td>
<td>((±ae, 0))</td>
<td>((0, ±ae))</td>
</tr>
<tr>
<td>Vertices</td>
<td>((±a, 0))</td>
<td>((0, ±a))</td>
</tr>
<tr>
<td>Equation of directrices</td>
<td>(x = ±\frac{a}{e})</td>
<td>(y = ±\frac{a}{e})</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>(e = \sqrt{\frac{a^2 - b^2}{a^2}})</td>
<td>(e = \sqrt{\frac{a^2 - b^2}{b^2}})</td>
</tr>
<tr>
<td>Length of latus rectum</td>
<td>(\frac{2b^2}{a})</td>
<td>(\frac{2b^2}{a})</td>
</tr>
<tr>
<td>Ends of latus-recta</td>
<td>((±ae, ±\frac{b^2}{a}))</td>
<td>((±\frac{b^2}{a}, ±ae))</td>
</tr>
<tr>
<td>Parametric coordinates</td>
<td>((a \cos θ, b \sin θ))</td>
<td>((a \cos θ, b \sin θ))</td>
</tr>
<tr>
<td>Focal radii</td>
<td>(SP = a - ex_1) and (S'P = a + ex_1)</td>
<td>(SP = a - ey_1) and (S'P = a + ey_1)</td>
</tr>
<tr>
<td>Sum of focal radii</td>
<td>(2a)</td>
<td>(2a)</td>
</tr>
<tr>
<td>Distance between foci</td>
<td>(2ae)</td>
<td>(2ae)</td>
</tr>
<tr>
<td>Distance between directrices</td>
<td>(\frac{2a}{e})</td>
<td>(\frac{2a}{e})</td>
</tr>
<tr>
<td>Tangents at the vertices</td>
<td>(x = ±a)</td>
<td>(y = ±a)</td>
</tr>
</tbody>
</table>
The equation of tangent to the ellipse
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]
at \(P(x_1, y_1) \) is
\[\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1 \]

Tangent

P(x_1y_1)

Normal

The equation of normal to the ellipse
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]
at \(P(x_1, y_1) \) is
\[\frac{a^2 x}{x_1} - \frac{b^2 y}{y_1} = a^2 - b^2 \]

Note:
Four normals can be drawn from any point to the ellipse.
Condition for \(y = mx + c \) to be a tangent to the ellipse and points of tangency

The equation of tangent to the ellipse

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at } P(x_1y_1)
\]
Given \(mx + y = c \) \(\text{...(2)} \)

(1) and (2) represent the same line.

\[\frac{x_1}{a^2} = \frac{y_1}{b^2} = \frac{1}{c} \]

Thus, \[m = -\frac{a^2}{b^2} \]

\[x_1 = -\frac{a^2 m}{c}, \quad y_1 = \frac{b^2}{c} \]

Since \(P(x_1', y_1') \) lies on the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)

we get, \[\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1 \]

\[\Rightarrow \frac{a^4 m^2}{c^2 a^2} + \frac{b^4}{c^2 b^2} = 1 \]

CHORD WITH A GIVEN MID POINT

The equation of the chord of the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) with \(P(x_1, y_1) \) as its middle point is given by

\[T = S_1 \]

where \[T = \frac{xx_1}{a^2} + \frac{yy_1}{b^2} - 1 \] and \[S_1 = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - 1 \].
CHORD OF CONTACT
The equation of chord of contact of tangents drawn from a point \(P(x_1, y_1) \) to the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) is \(T = 0 \), where

\[
T = \frac{xx_1}{a^2} + \frac{yy_1}{b^2} - 1.
\]

So Review the formulae

The following are some standard results for an ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) and a hyperbola \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \):

1. The parametric equations of an ellipse (hyperbola) or the coordinates of any point on the ellipse (hyperbola) are \(x = a \cos \theta, \quad y = b \sin \theta \) (\(x = a \sec \theta, \quad y = b \tan \theta \)). The point is denoted “\(\theta \)”.
2. An equation of the tangent at the above point “\(\theta \)” is

\[
\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1 \quad \left(\frac{x}{a} \sec \theta - \frac{y}{b} \tan \theta = 1 \right)
\]

3. An equation of the normal at the same point “\(\theta \)” is

\[
\frac{ax}{\cos \theta} - \frac{by}{\sin \theta} = a^2 - b^2 \quad \left(\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2 \right)
\]
4. An equation of the tangent at the point \(P(x', y') \) on the ellipse is\[
\frac{xx'}{a^2} + \frac{yy'}{b^2} = 1
\]

For the hyperbola \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \), results corresponding to (4) – (6) and (8) are obtained by replacing \(b^2 \) by \((-b^2) \).

5. The condition that the line \(y = mx + c \) touches the ellipse is \(c^2 = a^2 m^2 + b^2 \), so that the equation of any tangent to the ellipse (not parallel to the \(y \)-axis) can be written as \(y = mx \pm \sqrt{a^2 m^2 + b^2} \).

6. **Director circle** of an ellipse is the locus of the point of intersection of tangents to the ellipse which intersect at right angles and its equation is \(x^2 + y^2 = a^2 + b^2 \).

7. **Auxiliary circle** of an ellipse is the circle on major axis of the ellipse as diameter and its equation is \(x^2 + y^2 = a^2 \). If \(P \) is a point on the ellipse and \(Q \) is a point on the auxiliary circle such that \(Q \) lies on the ordinate produced of the point \(P \), then \(\angle ACQ \) (where \(CA \) is the semimajor axis of the ellipse) is called the **eccentric angle** of the point \(P \) on the ellipse and the coordinates of \(P \) are \((a \cos \phi, b \sin \phi)\) where \(\phi = \angle ACQ \).
8. A diameter of an ellipse is the locus of the mid points of a system of parallel chords of the ellipse and its equation is

\[y = -\frac{b^2}{a^2} \cdot \frac{x}{m}, \]

where \(m \) is the slope of the parallel chords of the ellipse which are bisected by it. This is a line through the centre of the ellipse. Two diameters of an ellipse are said to be *conjugate* when each bisects the chords parallel to the others. Thus two diameters \(y = m \cdot x \) and \(y = m' \cdot x \) of the ellipse are conjugate if

\[m \cdot m' = -\frac{b^2}{a^2}. \]

9.

A hyperbola whose asymptotes are perpendicular to each other is called a *rectangular hyperbola* and its equation is \(x^2 - y^2 = a^2 \). By taking the asymptotes of the rectangular hyperbola as the coordinate axes, its equation can be written as \(xy = c^2 \) (where \(c^2 = a^2/2 \)) and the parametric equation of this rectangular hyperbola is \(x = c \cdot t, \; y = c/t, \; t \) being the parameter.

An asymptote to a curve is a line which touches the curve at infinity. Thus equation of the asymptotic of the hyperbola

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \]

is

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0. \]
Question

The number of values of c such that the straight line $y = 4x + c$ touches the curve $\frac{x^2}{4} + y^2 = 1$ is

(a) 0 (b) 1 (c) 2 (d) infinite

Ans. (c)

Solution We know that $y = mx + c$ touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ if $c^2 = a^2 m^2 + b^2$
Here $m = a^2 = 4$, $b^2 = 1$ so $c^2 = 4 \times 4^2 + 1$ \Rightarrow $c = \pm \sqrt{65}$

Question

The equation of the normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the end of the latus rectum in the first quadrant, is
(a) $x + ey - ae^3 = 0$ (b) $x - ey + ae^3 = 0$
(c) $x - ey - ae^3 = 0$ (d) none of these

Solution

(c). The end of the latus rectum in the first quadrant is

$\left(ae, \frac{b^2}{a} \right)$.

Equation of normal at $\left(ae, \frac{b^2}{a} \right)$ is

$\frac{a^2 x}{ae} - \frac{b^2 y}{b^2 / a} = a^2 - b^2$

$\left[\frac{a^2 x}{x_1} - \frac{b^2 y}{y_1} = a^2 - b^2 \right]$ or $\frac{a}{e} = a^2 e^2$

$\frac{x - ey - ae^3 = 0}{\therefore e^2 = \frac{a^2 - b^2}{a^2}}$
The eccentricity of the conic $9x^2 + 25y^2 - 18x - 100y - 116 = 0$ is
\[\frac{5}{4} \quad \text{or} \quad \frac{4}{5}\]
\[\frac{3}{5} \quad \text{or} \quad \text{None}\]

 Ans (b)

The equation can be written as
\[9x^2 - 18x - 25y^2 - 100y = 116\]
\[9(x^2 - 2x) + 25(y^2 - 4y) = 116\]
\[9(x^2 - 2x + 1) + 25(y^2 - 4y + 4) = 116 + 9 + 100\]
\[9(x-1)^2 + 25(y-2)^2 = 225\]
\[\Rightarrow \frac{(x-1)^2}{25} + \frac{(y-2)^2}{9} = 1\]
which is the ellipse with centre at $(1, 2)$

Thus
\[a^2 = 25, \quad b^2 = 9\]

Thus
\[b^2 = a^2 (1-e^2)\]
\[\Rightarrow 25 = 25(1-e^2)\]
\[\Rightarrow e^2 = \frac{4}{5}\]

Area of the greatest rectangle that can be inscribe in the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) is

\[\text{(a) } \sqrt{ab} \quad \text{(b) } \frac{a}{b} \quad \text{(c) } 2ab \quad \text{(d) } ab\]

Ans. (c)

Solution Let the vertices of the rectangle be $(\pm a \cos \theta, \pm b \sin \theta)$, then the Area of the rectangle is $4ab \sin \theta \cos \theta = 2ab \sin 2\theta$. The maximum value of which is $2ab$ as $\sin 2\theta \leq 1$.
Question

If the normal at the end of a latus rectum of an ellipse passes through one extremity of the minor axis, then
(a) $e^4 + e^2 - 1 = 0$ (b) $e^4 - e^2 + 1 = 0$
(c) $e^4 - e^2 - 1 = 0$ (d) none of these

Solution

(a). Let the equation of the ellipse be

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Let the normal at the extremity L of the latus rectum passes through the extremity B' of the minor axis.

Coordinates of L are $\left(ae, \frac{b^2}{a} \right)$ and coordinates of B' are $(0, -b)$.

Equation of the normal at L is

$$\frac{a^2 \cdot x}{ae} - \frac{b^2 \cdot y}{b^2/a} = a^2 - b^2 \left[\frac{a^2 x}{x_1} - \frac{b^2 y}{y_1} = a^2 - b^2 \right]$$

or

$$\frac{ax}{e} - ay = a^2 - b^2.$$

If it passes through $B'(0, -b)$, then $0 + ab = a^2 - b^2$

$$\Rightarrow a^2 b^2 = (a^2 - b^2)^2$$

But $b^2 = a^2 (1 - e^2)$.

$\therefore a^2 \times a^2 (1 - e^2) = [a^2 - a^2 (1 - e^2)]^2$

$\Rightarrow a^4 (1 - e^2) = a^4 (1 - 1 + e^2)^2$

$\Rightarrow 1 - e^2 = e^2$ or $e^4 + e^2 - 1 = 0$.
The foci of the ellipse \(\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25} \) coincide, then the value of \(b^2 \) is

(a) 5 \hspace{1cm} (b) 7 \hspace{1cm} (c) 9 \hspace{1cm} (d) 1

Ans. (b)

Solution \[16 - b^2 = \frac{144}{25} + \frac{81}{25} \Rightarrow b^2 = 7. \]

Eccentric angle of a point on the ellipse \(x^2 + 3y^2 = 6 \) at a distance 2 units from the centre of the ellipse is

(a) \(\frac{\pi}{4} \)
(b) \(\frac{\pi}{3} \)
(c) \(\frac{3\pi}{4} \)
(d) \(\frac{2\pi}{3} \)

Solution

\((a, c) \). The equation of ellipse can be written in the form

\[\frac{x^2}{(\sqrt{6})^2} + \frac{y^2}{(\sqrt{2})^2} = 1. \]

Let the eccentric angle of the point be \(\theta \), then its coordinates are \((\sqrt{6} \cos \theta, \sqrt{2} \sin \theta) \).

Since the distance of the point from the centre is 2 units

\[(\sqrt{6} \cos \theta - 0)^2 + (\sqrt{2} \sin \theta - 0)^2 = 4 \]

\[\Rightarrow 6 \cos^2 \theta + 2(1 - \cos^2 \theta) = 4 \Rightarrow 4\cos^2 \theta = 2 \]

\[\Rightarrow \cos \theta = \pm \frac{1}{\sqrt{2}}, \quad \theta = \frac{\pi}{4} \text{ or } 3\pi \frac{\pi}{4}. \]
Question

In an ellipse, the distance between the focii is 6 and minor axis is 8, then the eccentricity is

(a) $\frac{1}{\sqrt{5}}$ (b) $\frac{3}{5}$ (c) $\frac{1}{2}$ (d) $\frac{4}{5}$

Ans. (b)

Solution Let the equation of the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where $b = 4$.
If e is the eccentricity then $2ae = 6$
$\Rightarrow \quad a^2e^2 = 9$
$\Rightarrow \quad a^2 - b^2 = 9 \quad \Rightarrow \quad a^2 = 25$
$\Rightarrow \quad a = 5$ and $e = \frac{3}{5}$.

Question

An ellipse has CB as a semi minor axis, F, F' are its foci and the angle FBF' is a right angle. Then the eccentricity of the ellipse is

(a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2}$
(c) $\frac{\sqrt{3}}{\sqrt{2}}$ (d) none of these
Solution

(a). Since \(\angle FBF' = \frac{\pi}{2} \)

\[B \\
\]
\[F' \quad C \quad F \\
\]
\[∴ \quad \angle FBC = \angle F'BC = \frac{\pi}{4} \]
\[∴ \quad CB = CF \Rightarrow b = ae \Rightarrow b^2 = a^2 e^2 \Rightarrow a^2(1 - e^2) = a^2 e^2 \Rightarrow 2e^2 = 1 \Rightarrow e = \frac{1}{\sqrt{2}}. \]

Question

The normal to the curve at \(P(x, y) \) meets the \(x \)-axis at \(G \). If the distance of \(G \) from the origin is twice the abscissa of \(P \), then the curve is

(a) ellipse
(b) parabola
(c) circle
(d) hyperbola or ellipse

Ans. (d)

Solution
Equation of the normal at \((x, y) \) is \(Y - y = -\frac{dx}{dy} (X - x) \) which meets the \(x \)-axis at \(G \left(x + y \frac{dy}{dx} \right) \), then \(x + y \frac{dy}{dx} = \pm 2x \)

\[⇒ \quad x + y \frac{dy}{dx} = 2x \quad ⇒ \quad y \frac{dy}{dx} = x dx \quad ⇒ \quad x^2 - y^2 = c \]

or \[y \frac{dy}{dx} = -3x \frac{dx}{dx} \quad ⇒ \quad 3x^2 + y^2 = c \]

Thus the curve is either hyperbola or ellipse.
Question

Let P be a variable point on the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) with foci F_1 and F_2. If A is the area of the triangle PF_1F_2, then the maximum value of A is

(a) $2abe$
(b) abe
(c) $\frac{1}{2} a be$
(d) none of these

Solution

(b). Let $P = (a \cos \theta, b \sin \theta)$

Then, $A = \text{area of } \Delta PF_1F_2$

\[
\begin{vmatrix}
 a \cos \theta & b \sin \theta & 1 \\
 ae & 0 & 1 \\
 -ae & 0 & 1 \\
\end{vmatrix} = \frac{1}{2} \cdot 2ae \cdot b \sin \theta = abe | \sin \theta |
\]

Clearly, A is maximum when $| \sin \theta | = 1$.

\[
\therefore \text{ Maximum value of } A = abe.
\]
Question

If \(F_1 = (3, 0), F_2 = (-3, 0) \) and \(P \) is any point on the curve \(16x^2 + 25y^2 = 400 \), then \(PF_1 + PF_2 \) equals

(a) 8
(b) 6
(c) 10
(d) 12

Ans. (c)

Solution The equation of the ellipse can be written as

\[
\frac{x^2}{25} + \frac{y^2}{16} = 1
\]

Here \(a^2 = 25, b^2 = 16 \) \(\Rightarrow 16 = 25 (1 - e^2) \Rightarrow e = 3/5 \)

So that focii of the ellipse are \((\pm ae, 0)\) i.e. \((\pm 3, 0)\) or \(F_1\) and \(F_2\).

By definition of the ellipse, since \(P \) is any point on the ellipse

\[PF_1 + PF_2 = 2a = 2 \times 5 = 10 \]

Question

The number of real tangents that can be drawn to the ellipse \(3x^2 + 5y^2 = 32 \) and \(25x^2 + 9y^2 = 450 \) passing through \((3, 5)\) is

(a) 0
(b) 2
(c) 3
(d) 4

Solution

\(\textbf{c).} \) Since \(3 \times 3^2 + 5 \times 5^2 - 32 > 0 \), the point \((3, 5)\) lies outside the ellipses \(3x^2 + 5y^2 = 32 \).

Also, \(25 \times 3^2 + 9 \times 5^2 - 450 = 0 \), \(\therefore \) the point \((3, 5)\) lies on the ellipse \(25x^2 + 9y^2 = 450 \). So the required number of tangents is 3.
The number of values of c such that the straight line $y = 4x + c$ touches the curve $x^2/4 + y^2 = 1$ is

(a) 0 (b) 1 (c) 2 (d) infinite

_ans. (c)

Solution We know that $y = mx + c$ touches the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) if \(c^2 = a^2 m^2 + b^2 \).

Here \(m = a^2 = 4, b^2 = 1 \) so \(c^2 = 4 \times 4^2 + 1 \implies c = \pm \sqrt{65} \)

The locus of mid-points of focal chords of the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) is

(a) \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{ex}{a} \) (b) \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{ex}{a} \)

(c) \(x^2 + y^2 = a^2 + b^2 \) (d) none of these

Solution

(a). Let \((h, k)\) be the mid point of a focal chord. Then its equation is \(T = S_1 \)

\[\frac{xh}{a^2} + \frac{ky}{b^2} - 1 = \frac{h^2}{a^2} + \frac{k^2}{b^2} - 1. \]

Since it passes through \((ae, 0)\)

\[hae = \frac{h^2}{a^2} + \frac{k^2}{b^2}. \]

\[\therefore \text{ Locus of } (h, k) \text{ is } \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{ex}{a} \]
The normal at an end of a latus rectum of the ellipse $x^2/a^2 + y^2/b^2 = 1$ passes through an end of the minor axis if

(a) $e^4 + e^2 = 1$
(b) $e^3 + e^2 = 1$
(c) $e^2 + e = 1$
(d) $e^3 + e = 1$

Ans. (a)

Solution Let an end of a latus rectum be $(ae, b\sqrt{1-e^2})$, then the equation of the normal at this end is

$$x - ae = \frac{y - b\sqrt{1-e^2}}{ae/a^2} \cdot \frac{b\sqrt{1-e^2}}{b^2}$$

It will pass through the end $(0, -b)$ if

$$-a^2 = \frac{-b^2(1 + \sqrt{1-e^2})}{\sqrt{1-e^2}} \quad \text{or} \quad \frac{b^2}{a^2} = \frac{\sqrt{1-e^2}}{1 + \sqrt{1-e^2}}$$

or

$$(1-e^2) \left[1 + \sqrt{1-e^2} \right] = \sqrt{1-e^2}$$

or

$$\sqrt{1-e^2} + 1 - e^2 = 1 \quad \text{or} \quad e^4 + e^2 = 1$$

If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then its eccentric angle θ is equal to

(a) 0
(b) 90°
(c) 45°
(d) 60°
Solution

(c). Equation of any tangent to the ellipse
\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\]
is
\[
\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1
\] ...

Also, \(\frac{x}{a} + \frac{y}{b} = \sqrt{2}\) touches the given ellipse.

Comparing coefficients in (1) and (2), we get
\[
\frac{\cos \theta / a}{1/a} = \frac{\sin \theta / b}{1/b} = \frac{1}{\sqrt{2}}
\]
\[\Rightarrow \quad \cos \theta = \frac{1}{\sqrt{2}} = \sin \theta \]

\[\therefore \quad \theta = 45^\circ.\]

Question

The locus of the middle points of the portions of the tangents of the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) included between the axis is the curve.

(a) \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 4\)

(b) \(\frac{a^2}{x^2} + \frac{b^2}{y^2} = 4\)

(c) \(a^2 x^2 + b^2 y^2 = 4\)

(d) \(b^2 x^2 + a^2 y^2 = 4\)

Ans. (b)

Solution

Equation of a tangent to the ellipse can be written as \(\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\) which meets the axes at \((a/\cos \theta, 0)\) and \((0, b/\sin \theta)\). If \((h, k)\) is the middle point of \(AB\), then

\[h = a/2 \cos \theta, \quad k = b/2 \sin \theta\]

Eliminating \(\theta\) we get \((a/2h)^2 + (b/2k)^2 = 1\)

\[\Rightarrow \quad \text{locus of } P(h, k) \text{ is } a^2 x^2 + b^2 y^2 = 4.\]
Question

If any tangent to the ellipse \(\frac{x^2}{16} + \frac{y^2}{9} = 1 \) intercepts equal lengths \(l \) on the axes, then \(l = \)
(a) 3 \hspace{1cm} (b) 5
(c) \(\sqrt{5} \) \hspace{1cm} (d) none of these

Solution

(b). The equation of any tangent to the given ellipse is
\[\frac{x}{4} \cos \theta + \frac{y}{3} \sin \theta = 1. \]

The tangent meets \(x \)-axis at \(A \left(\frac{4}{\cos \theta}, 0 \right) \) and \(y \)-axis at \(\left(0, \frac{3}{\sin \theta} \right) \).

Given: \(\frac{4}{\cos \theta} = l = \frac{3}{\sin \theta} \)

\[\Rightarrow \cos \theta = \frac{4}{l} \text{ and } \sin \theta = \frac{3}{l} \]

\[\Rightarrow \cos^2 \theta + \sin^2 \theta = \frac{16}{l^2} + \frac{9}{l^2} \rightleftharpoons l^2 = 25. \therefore l = 5. \]
In a model, it is shown that an arc of a bridge is semi-elliptical with major axis horizontal. If the length of the base is 9 m and the highest part of the bridge is 3 m from the horizontal; the best approximation of the height of the arch at 2 m from the centre of the base is

\[
(a) \; \frac{11}{4} \text{ m} \quad (b) \; 8/3 \text{ m} \quad (c) \; 7/2 \text{ m} \quad (d) \; 2 \text{ m}
\]

Ans. (b)

Solution Let the equation of the semi elliptical arc be \(x^2/a^2 + y^2/b^2 = 1 \) \((y > 0)\)

Length of the major axis = \(2a = 9\) \(\Rightarrow a = 9/2\)

Length of the semi minor axis = \(b = 3\).

So the equation of the arc becomes \(\frac{4}{81} \cdot \frac{x^2}{9} + \frac{y^2}{9} = 1\)

If \(x = 2\), then \(y^2 = \frac{65}{9}\) \(\Rightarrow y = \frac{1}{3} \sqrt{65} = \frac{8}{3}\) approximately.

The eccentricity of an ellipse with its centre at the origin is \(1/2\). If one of the directrix is \(x = 4\), then the equation of the ellipse is

\[
(a) \; 4x^2 + 3y^2 = 12 \\
(b) \; 3x^2 + 4y^2 = 12 \\
(c) \; 3x^2 + 4y^2 = 1 \\
(d) \; 4x^2 + 3y^2 = 1
\]

Ans. (b)

Solution Let the equation of the ellipse be

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad \text{then} \quad \frac{a^2 - b^2}{a^2} = \frac{1}{4} = e^2
\]

and directrix \(x = a/e = 4 \Rightarrow a = 2, b^2 = 3\)

and the ellipse is \(x^2/4 + y^2/3 = 1\)
If p is the length of the perpendicular from a focus upon the tangent at any point P of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and r is the distance of P from the focus, then

$$\frac{2a}{r} - \frac{b^2}{p^2} = \begin{align*}
(a) & \quad -1 \\
(b) & \quad 0 \\
(c) & \quad 1 \\
(d) & \quad 2
\end{align*}$$

Ans. (c)

Solution The equation of the tangent at $P \left(a \cos \theta, b \sin \theta \right)$ to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

$$\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1$$

length of the perpendicular from the focus $(ae, 0)$ on the ellipse is

$$p = \frac{ab(e \cos \theta - 1)}{\sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}} = \frac{ab(e \cos \theta - 1)}{\sqrt{b^2 \cos^2 \theta + a^2(1 - \cos^2 \theta)}}$$

$$= \frac{ab(e \cos \theta - 1)}{\sqrt{a^2 - a^2 e^2 \cos^2 \theta}} = b \sqrt{\frac{1 - e \cos \theta}{1 + e \cos \theta}}$$

$$\Rightarrow \quad \frac{b^2}{p^2} = \frac{1 + e \cos \theta}{1 - e \cos \theta}$$

Now \[r^2 = (ae - a \cos \theta)^2 + b^2 \sin^2 \theta = a^2 \left[(e - \cos \theta)^2 + (1 - e^2) \sin^2 \theta \right] \]

$$= a^2 \left[e^2 \cos^2 \theta - 2e \cos \theta + 1 \right] = a^2 (1 - e \cos \theta)^2$$

$$\Rightarrow \quad r = a(1 - e \cos \theta)$$

Now \[\frac{2a}{r} - \frac{b^2}{p^2} = \frac{2}{1 - e \cos \theta} - \frac{1 + e \cos \theta}{1 - e \cos \theta} = 1 \]
If \(y = x \) and \(3y + 2x = 0 \) are the equations of a pair of conjugate diameters of an ellipse, then the eccentricity of the ellipse is

(a) \(\sqrt{2/3} \)
(b) \(1/\sqrt{3} \)
(c) \(1/\sqrt{2} \)
(d) \(2/\sqrt{5} \)

Answer (b)

Solution Let the equation of the ellipse be \(x^2/a^2 + y^2/b^2 = 1 \)

Slope of the given diameters are \(m_1 = 1 \), \(m_2 = -2/3 \).

\[
\Rightarrow m_1 m_2 = -2/3 = -b^2/a^2
\]

[using the condition of conjugacy of two diameters]

\[
3b^2 = 2a^2 \Rightarrow 3a^2 (1 - e^2) = 2a^2,
\]

\[
1 - e^2 = 2/3 \Rightarrow e^2 = 1/3 \Rightarrow e = 1/\sqrt{3}
\]

If \(\alpha, \beta \) are the eccentric angles of the extremities of a focal chord of the ellipse \(x^2/16 + y^2/9 = 1 \), then \(\tan (\alpha/2) \tan (\beta/2) = \)

(a) \(\frac{\sqrt{7} + 4}{\sqrt{7} - 4} \)
(b) \(-\frac{9}{23} \)
(c) \(\frac{\sqrt{5} - 4}{\sqrt{5} + 4} \)
(d) \(\frac{8\sqrt{7} - 23}{9} \)

Answer (d)

Solution The equation of the ellipse is of the form \(x^2/a^2 + y^2/b^2 = 1 \) where \(a^2 = 16 \), \(b^2 = 9 \)

\[
\therefore \text{the eccentricity } e = \sqrt{1 - \frac{9}{16}} = \frac{\sqrt{7}}{4}.
\]

Let \(P (4 \cos \alpha, 3 \sin \alpha) \) and \(Q (4 \cos \beta, 3 \sin \beta) \) be a focal chord of the ellipse passing through the focus at \((\sqrt{7}, 0) \).
Then \[\frac{3 \sin \beta}{4 \cos \beta - \sqrt{7}} = \frac{3 \sin \alpha}{4 \cos \alpha - \sqrt{7}} \]

\[\Rightarrow \frac{\sin (\alpha - \beta)}{\sin \alpha - \sin \beta} = \frac{\sqrt{7}}{4} \]

\[\Rightarrow \frac{\cos [(\alpha - \beta)/2]}{\cos [(\alpha + \beta)/2]} = \frac{\sqrt{7}}{4} \]

\[\Rightarrow \tan \left(\frac{\alpha}{2} \right) \tan \left(\frac{\beta}{2} \right) = \frac{\sqrt{7} - 4}{\sqrt{7} + 4} = \frac{23 - 8\sqrt{7}}{-9} \]

Question

If an ellipse slides between two perpendicular straight lines, then the locus of its centre is

(a) a parabola (b) an ellipse
(c) a hyperbola (d) a circle

Ans. (d)

Solution Let \(2a, 2b \) be the length of the major and minor axes respectively of the ellipse. If the ellipse slides between two perpendicular lines, the point of intersection \(P \) of these lines being the point of intersection of perpendicular tangents lies on the Director circle of the ellipse. This means that the centre \(C \) of the ellipse is always at a constant distance \(\sqrt{a^2 + b^2} \) from \(P \). Hence the locus of \(C \) is a circle.
Question

If the tangent at a point \((a \cos \theta, b \sin \theta)\) on the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) meets the auxiliary circle in two points, the chord joining them subtends a right angle at the centre; then the eccentricity of the ellipse is given by

(a) \(1 + \cos^2 \theta\)^{-1/2}
(b) \(1 + \sin^2 \theta\)
(c) \(1 + \sin^2 \theta\)^{-1/2}
(d) \(1 + \cos^2 \theta\)

Ans. (c)

Solution

Equation of the tangent at \((a \cos \theta, b \sin \theta)\) to the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) is \(\Rightarrow \frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\) (i)

The joint equation of the lines joining the points of intersection of (i) and the auxiliary circle \(x^2 + y^2 = a^2\) to the origin, which is the center of the circle, is

\[x^2 + y^2 = a^2 \left[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta \right]^2\]

Since these lines are at right angles

Co-efficient of \(x^2\) + Co-efficient of \(y^2\) = 0

\[\Rightarrow 1 - a^2 \left(\frac{\cos^2 \theta}{a^2}\right) + 1 - a^2 \left(\frac{\sin^2 \theta}{b^2}\right) = 0\]

\[\Rightarrow \sin^2 \theta \left(1 - \frac{a^2}{b^2}\right) + 1 = 0\]

\[\Rightarrow \sin^2 \theta (b^2 - a^2) + b^2 = 0\]

\[\Rightarrow \sin^2 \theta [a^2 (1 - e^2) - a^2] + a^2 (1 - e^2) = 0\]

\[\Rightarrow (1 + \sin^2 \theta) a^2 e^2 = a^2 \Rightarrow e = (1 + \sin^2 \theta)^{-1/2}\]
Formulae related to Hyperbola

Parametric equations of the hyperbola

A point (x, y) on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ can be represented as $x = a \sec \theta$, $y = b \tan \theta$ in a single parameter θ. These equations are called parametric equations of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The point $(a \sec \theta, b \tan \theta)$ is simply denoted by Θ.

Some important results

i) The equation of the chord joining the points $(a \sec \alpha, b \tan \alpha)$ and $(a \sec \beta, b \tan \beta)$ is

$$x \cos \frac{\alpha - \beta}{2} - y \sin \frac{\alpha + \beta}{2} = \cos \frac{\alpha + \beta}{2}.$$

ii) The equation of the tangent at $P(\theta)$ on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

$$\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1.$$

iii) The equation of the normal at $P(\theta)$ on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

$$\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2.$$
iv) The condition that the line $lx + my + n = 0$
may be a normal to the hyperbola
\[
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ is } \frac{a^2}{l^2} - \frac{b^2}{m^2} = \frac{(a^2 + b^2)^2}{n^2}
\]

v) If P is a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
with foci S and S^1, then $S^1P - SP = 2a$.

vi) The locus of point of intersection of perpendicular tangents to an hyperbola
\[
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ is a circle } x^2 + y^2 = a^2 - b^2 \text{ called director circle of the hyperbola.}
\]

vii) The locus of the feet of perpendiculars drawn the foci to any tangent to the hyperbola
\[
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ is a circle } x^2 + y^2 = a^2, \text{ called auxiliary circle of the hyperbola.}
Parabola

\[y^2 = 4ax \] is a standard form of the equation of a parabola. Four standard forms of a parabola are:

\[y = a \]

\[x^2 = 4ay \]

\[x = a \quad y^2 = -4ax \]

\[x^2 = -4ay \]

The following terms are used in context of the parabola \(y^2 = 4ax \).

1. The point \(O(0,0) \) is the vertex of the parabola, and the tangent to the parabola at the vertex is \(x = 0 \).
2. The line joining the vertex \(O \) and the focus \(S(a,0) \) is the axis of the parabola and its equation is therefore \(y = 0 \).
3. Any chord of the parabola perpendicular to its axis is called a double ordinate.
4. Any chord of the parabola passing through its focus is called a focal chord.
5. The focal chord of the parabola perpendicular to its axis is called its latus rectum; the length of this latus rectum is therefore \(4a \).
6. The points on a parabola, the normals at which are concurrent, are called co-normal points of the parabola. If \((x_1, y_1), (x_2, y_2) \) and \((x_3, y_3) \) are conormal points of the parabola \(y^2 = 4ax \), then \(y_1 + y_2 + y_3 = 0 \).
7. A line which bisects a system of parallel chords of a parabola is called a diameter of the parabola.
The following are some standard results for the parabola $y^2 = 4ax$:

1. The parametric equations of the parabola are
 $x = at^2, y = 2at$.
2. The tangent to the parabola at (x', y') is $yy' = 2a(x + x')$ and that at $(at^2, 2at)$ is $ty = x + at^2$.
3. The condition that the line $y = mx + c$ is a tangent to the parabola is $c = alm$ and the equation of any tangent to it (not parallel to the y-axis) is therefore $y = mx + (alm)$.
4. The chord of contact (defined as in circles) of (x', y') w.r.t. the parabola is $yy' = 2a(x + x')$.
5. The polar (defined as in circle) of (x', y') w.r.t. the parabola is $yy' = 2a(x + x')$.
6. The chord with mid-Point (x', y') of the parabola is $T = S'$, where $T = yy' - 2a(x + x')$ and $S' = y'^2 - 4ax'$.
7. The equation of the pair of tangents from (x', y') to the parabola is $T^2 = SS'$. Where $S = y^2 - 4ax$.
8. The normal at $(at^2, 2at)$ to the parabola is $y = -tx + 2at + at^2$. If m is the slope of this normal, then its equation is $y = mx - 2am^2 + am^3$, which is the normal to the parabola at $(am^2, -2am)$.
9. A diameter of the parabola is the locus of the middle points of a system of parallel chords of the parabola and the equation of a diameter is $y = 2alm$ where m is the slope of the parallel chords which are bisected by it.
10. The equation of a chord joining $(at_1^2, 2at_1)$ and $(at_2^2, 2at_2)$ is $y(t_1 + t_2) = 2x + 2at_1t_2$.
11. If the chord joining the points having parameters t_1 and t_2 passes through the focus, then t_1, t_2 are real.
12. If the coordinates of one end of a focal chord are $(at^2, 2at)$, then the coordinates of the other end are $(ar^2, -2ar)$.
13. For the end of the latus rectum, the values of the parameters t are ± 1.
14. The tangents at the points $(at_1^2, 2at_1)$ and $(at_2^2, 2at_2)$ intersect at $(at_1t_2, a(t_1 + t_2))$.
15. The tangents at the extremities of any focal chord intersect at right angles on the directrix.
16. The locus of the point of intersection of perpendicular tangents to the parabola is its directrix.
17. The area of the triangle formed by any three points on the parabola is twice the area of the triangle formed by the tangents at these points.
18. The circle described on any focal chord of a parabola as diameter touches the directrix.

OPTICAL PROPERTY OF PARABOLA

(a) A ray parallel to the axis of the parabola after reflection from its internal surface passes through the focus.
(b) If a point is at a minimum distance from a parabola, then this point must lie on a normal to the parabola through this point.
The point of intersection of tangents drawn at two different points of contact \(P(at_1^2, 2at_1) \) and \(Q(at_2^2, 2at_2) \) on the parabola \(y^2 = 4ax \) is

\[R = (at_1t_2, a(t_1 + t_2)) \]
\[
\left(\frac{2at_1 + 2at_2}{2} = a(t_1 + t_2) \right)
\]

is the y-coordinate of the point of intersection of tangents at P and Q on the parabola.

The orthocentre of the triangle formed by three tangents to the parabola lies on the directrix.

The locus of the point of intersection of tangents to the parabola \(y^2 = 4ax \) which meet at an angle \(\alpha \) is

\[(x + \alpha)^2 \tan^2 \alpha = y^2 - 4ax \]

The tangents to the parabola \(y^2 = 4ax \) at \(P(at_1^2, 2at_1) \) and \(Q(at_2^2, 2at_2) \) intersect at \(R \). Then the area of triangle \(PQR \) is

\[
\frac{1}{2} a^2(t_1 - t_2)^3.
\]

If the straight line \(lx + my + n = 0 \) touches the parabola \(y^2 = 4ax \), then \(ln = am^2 \).
If the line \(\frac{x}{l} + \frac{y}{m} = 1 \) touches the parabola \(y^2 = 4a(x + b) \) then \(m^2(l + b) + 4a^2 = 0. \)

If the two parabolas \(y^2 = 4x \) and \(x^2 = 4y \) intersect at point \(P \), whose abscissa is not zero, then the tangent to each curve at \(P \), make complementary angle with the \(x \)-axis.

If the line \(x \cos \alpha + y \sin \alpha = p \) touches the parabola \(y^2 = 4ax \), then \(p \cos \alpha + a \sin^2 \alpha = 0 \) and the point of contact is \((a \tan^2 \alpha, -2a \tan \alpha) \).

Tangents at the extremities of any focal chord of a parabola meet at right angle on the directrix.

Area of the triangle formed by three points on a parabola is twice the area of the triangle formed by the tangents at these points.

If the tangents at the points \(P \) and \(Q \) on a parabola meet in \(T \), then \(ST \) is the geometric mean between \(SP \) and \(SQ \), i.e., \(ST^2 = SP \cdot SQ \).

POSITION OF A POINT WITH RESPECT TO A PARABOLA

The point \((x_1, y_1)\) lies outside, on or inside the parabola \(y^2 = 4ax \) according as \(y_1^2 - 4ax_1 >, = \) or \(< 0 \), respectively.

NUMBER OF TANGENTS DRAWN FROM A POINT TO A PARABOLA

Two tangents can be drawn from a point to a parabola. The two tangents are real and distinct or coincident or imaginary according as the given point lies outside, on or inside the parabola.
EQUATION OF THE PAIR OF TANGENTS

The equation of the pair of tangents drawn from a point $P(x_1, y_1)$ to the parabola $y^2 = 4ax$ is $SS_1 = T^2$,
where $S = y^2 - 4ax$, $S_1 = y_1^2 - 4ax_1$
and $T = yy_1 - 2a(x + x_1)$

EQUATIONS OF NORMAL IN DIFFERENT FORMS

1. **Point Form** The equation of the normal to the parabola $y^2 = 4ax$ at a point (x_1, y_1) is
 $$y - y_1 = -\frac{y_1}{2a}(x - x_1).$$

2. **Parametric Form** The equation of the normal to the parabola $y^2 = 4ax$ at the point $(at^2, 2at)$ is
 $$y + tx = 2at + at^3.$$

3. **Slope Form** The equation of normal to the parabola $y^2 = 4ax$ in terms of slope ‘m’ is
 $$y = mx - 2am - am^3.$$

 Note: The coordinates of the point of contact are $(am^2, -2am)$.

 Condition for Normality The line $y = mx + c$ is a normal to the parabola
 $$y^2 = 4ax$$ if $c = -2am - am^3.$
POINT OF INTERSECTION OFNORMALS

The point of intersection of normals drawn at two different points of contact \(P(\text{at}_1^2, 2\text{at}_1)\) and \(Q(\text{at}_2^2, 2\text{at}_2)\) on the parabola \(y^2 = 4ax\) is

\[R = \left[2a + a \left(t_1^2 + t_2^2 + t_1t_2\right), -\text{at}_1\text{t}_2 \left(t_1 + t_2\right)\right].\]

If the normal at the point \(P(\text{at}_1^2, 2\text{at}_1)\) meets the parabola \(y^2 = 4ax\) again at \(Q(\text{at}_2^2, 2\text{at}_2)\), then

\[t_2 = -t_1 - \frac{2}{t_1}\]

Note that \(PQ\) is normal to the parabola at \(P\) and not at \(Q\).
CO-NORMAL POINTS

Any three points on a parabola normals at which pass through a common point are called co-normal points.

If three normals are drawn through a point \((h, k)\), then their slopes are the roots of the cubic:
\[
k = mh - 2am - am^3
\]

(i) The sum of the slopes of the normals at co-normal points is zero, i.e. \(m_1 + m_2 + m_3 = 0\).

(ii) The sum of the ordinates of the co-normal points is zero (i.e. \(-2am_1 - 2am_2 - 2am_3 = \frac{-2a(m_1 + m_2 + m_3)}{3}\) = 0).

(iii) The centroid of the triangle formed by the co-normal points lies on the axis of the parabola [the vertices of the triangle formed by the co-normal points are \((am_1^2, -2am_1), (am_2^2, -2am_2)\) and \((am_3^2, -2am_3)\). Thus, \(y\)-coordinate of the centroid becomes
\[
\frac{-2a(m_1 + m_2 + m_3)}{3} = \frac{-2a}{3} \times 0 = 0.
\]

Hence, the centroid lies on the x-axis, i.e. axis of the parabola.
(iv) If three normals drawn to any parabola $y^2 = 4ax$ from a given point (h, k) be real, then $h > 2a$.

CHORD OF CONTACT

The equation of chord of contact of tangents drawn from a point $P(x_1, y_1)$ to the parabola $y^2 = 4ax$ is $T = 0$ where $T = yy_1 - 2a(x + x_1)$.

CHORD WITH A GIVEN MID POINT

The equation of the chord of the parabola $y^2 = 4ax$ with $P(x_1, y_1)$ as its middle point is given by $T = S_1$ where $T = yy_1 - 2a(x + x_1)$ and $S_1 = y_1^2 - 4ax$.
Question

If the tangent to the parabola \(y^2 = 4ax \) meets the axis in \(T \) and tangent at the vertex \(A \) in \(Y \) and the rectangle \(TAYG \) is completed, then the locus of \(G \) is

(a) \(y^2 + 2ax = 0 \)
(b) \(y^2 + ax = 0 \)
(c) \(x^2 + ay = 0 \)
(d) none of these

Solution

(b). Let \(P (at^2, 2at) \) be any point on the parabola \(y^2 = 4ax \). The equation of tangent at \(P \) is \(ty = x + at^2 \).

Since the tangent meets the axis of parabola in \(T \) and tangent at the vertex \(A \) in \(Y \),

\[\therefore \text{coordinates of} \ T \text{and} \ Y \text{are} \ (-at^2, 0) \text{and} \ (0, at) \text{respectively.} \]

Let the coordinates of \(G \) be \((x_1, y_1) \).
Since \(TAYG \) is a rectangle,
\[\therefore \text{midpoint of diagonals} \ TY \text{and} \ GA \text{is same} \]
\[\frac{x_1 + 0}{2} = \frac{-at^2 + 0}{2} \quad \text{and} \quad \frac{y_1 + 0}{2} = \frac{0 + at}{2} \]
\[\Rightarrow x_1 = -at^2 \quad \text{and} \quad y_1 = at \]

Eliminating \(t \) from (1) and (2), we get
\[x_1 = -a \left(\frac{y_1}{a} \right)^2 \Rightarrow y_1^2 + ax_1 = 0. \]

\[\therefore \text{The locus of } G(x_1, y_1) \text{ is } y^2 + ax = 0. \]

Question

A point moves so that its distance from (3, 0) is twice the distance from (-3, 0), then the locus of the point

- a) is a circle with centre (-5, 1)
- b) is a straight line
- c) is an ellipse
- d) None of the above

Solution

Ans (d)

Let the moving point be \(P(x, y) \)
Given \(PA = 2PB \),
thus \(PA^2 = 4PB^2 \)

\[
\begin{align*}
(x-3)^2 + y^2 &= 4 ((x+3)^2 + y^2) \\
x^2 + y^2 - 6x + 9 &= 4x^2 + 4y^2 + 24x + 36 \\
3x^2 + 3y^2 + 30x + 27 &= 0 \\
x^2 + y^2 + 10x + 9 &= 0
\end{align*}
\]

Question

The number of common tangents to the circles
\(x^2 + y^2 - 2x + 4y + 4 = 0 \), \(x^2 + y^2 + 4x - 2y + 1 = 0 \) are

a) 0 b) 1 c) 2 d) 4
Solution

Ans (d)
The centres of the circles are $c_1 = (1, -2), c_2 = (-2, 1)$ the radii are
$r_1 = \sqrt{1 + 4 - 4} = 1, r_2 = \sqrt{4 + 1 - 1} = 2.$

Here $C_1C_2 = \sqrt{9 + 9} = 3\sqrt{2}.$
Since $C_1C_2 > r_1 + r_2,$ the circles are non-overlapping circles thus 4 common tangents.

Question

The radius of the director circle of the ellipse
\[
\frac{x^2}{6} + \frac{y^2}{4} = 1
\]

a) $\sqrt{10}$

b) 10

c) 5

d) $\sqrt{5}$
Solution

Ans (a)

Note:
The locus of point of intersection of perpendicular tangents to the ellipse
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] is \(x^2 + y^2 = a^2 + b^2 \) called
director circle of the ellipse.
\[\therefore x^2 + y^2 = 6 + 4 \]
i.e., \(x^2 + y^2 = 10 \), is the equation of the
director circle whose radius is \(\sqrt{10} \).

Question

The locus of the point of intersection of feet
of perpendicular from focus on the tangent
drawn to the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) is \(a > b \) is
\[x^2 + y^2 = 7, \text{ then} \]
a) \(a = 7 \) \hspace{1cm} b) \(b = 7 \)
c) \(a^2 = 7 \) \hspace{1cm} d) \(b^2 = 7 \)

Solution

Ans (c)

Note:
The locus of the point of intersection of feet
of perpendicular from focus on the tangent
drawn to the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) is \(x^2 + y^2 = a^2 \) called auxiliary circle.
\[\therefore a^2 = 7. \]
Question

The equation of the normal to the ellipse \(\frac{x^2}{10} + \frac{y^2}{5} = 1 \) at \((\sqrt{8}, 1)\) is

a) \(10x + 5y = 1\)

b) \(y = \sqrt{2}(x + 1)\)

c) \(x = \sqrt{2}(y + 1)\)

d) \(y = \sqrt{8}(x + 1)\)

Solution

Ans (c)
The equation of normal is
\[\frac{a^2 x}{x_1} - \frac{b^2 y}{y_1} = a^2 - b^2 \]

ie., \(\frac{10x}{\sqrt{8}} - \frac{5y}{1} = 10 - 5\)

\[\frac{2x}{\sqrt{8}} - y = 1\]

\[\frac{x}{\sqrt{2}} = 1 + y\]

\(\Rightarrow x = \sqrt{2}(1 + y)\)

Question

The equations of the tangents to the ellipse \(\frac{x^2}{28} + \frac{y^2}{16} = 1 \) which makes an angle \(60^\circ\) with the major axis are

a) \(y = \sqrt{3}x \pm 10\)

b) \(y = \sqrt{3}x \pm \sqrt{65}\)

c) \(x = \sqrt{3}y \pm 28\)

d) \(x = \sqrt{3}y \pm 7\)
Solution

Ans (a)
Here slope of tangent = \(\tan 60^\circ \)
\(m = \sqrt{3} \)
\(\therefore \) The equation of tangent is

\[
x^2 + \frac{y^2}{28} = 1
\]

\[
y = mx \pm \sqrt{a^2 m^2 + b^2}
\]
\[
y = \sqrt{3}x \pm \sqrt{28 \times 3 + 16}
\]
\[
y = \sqrt{3}x \pm 10.
\]

Question

The number of tangents to \(\frac{x^2}{25} + \frac{y^2}{16} = 1 \)
through (5, 0) is
a) 0

b) 1

c) 2

d) 3
Solution

Ans (b)
Since the points (5, 0) lies on the ellipse
\[\frac{x^2}{25} + \frac{y^2}{16} = 1 \] there is only one tangent (5, 0)

Question

The tangents at any point on the ellipse
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] meets the tangents at the vertices A and A' in L and M respectively. then AL, A'M =

a) \ a^2 \qquad b) \ b^2 \\
ab) \ ab \qquad d) \ a^2b^2
Solution

\textbf{Ans (b)}

The equation of tangent at \(P(\theta) \) to the ellipse

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ is}
\]

\[
\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1 \quad \ldots(1)
\]
at \(L \), \(x = a \cos \theta \) \(+ \frac{y \sin \theta}{b} = 1 \)

\[\Rightarrow y = \frac{b}{\sin \theta} \left(1 - \cos \theta \right) \]

\[\Rightarrow AL = \frac{b}{\sin \theta} \left(1 - \cos \theta \right) \]

at \(x = a \Rightarrow y = \frac{b}{\sin \theta} \left(1 + \cos \theta \right) \)

\[\Rightarrow A'M = \frac{b}{\sin \theta} \left(1 + \cos \theta \right) \]

thus \(AL. A'M = \frac{b^2}{\sin^2 \theta} \left(1 - \cos^2 \theta \right) = b^2 \).

Question

If \(a, b, c \) form a G.P., then twice the sum of the ordinates of the points of intersection of the line \(ax + by + c = 0 \) and the curve \(x + 2y^2 = 0 \) is

(a) \(\frac{b}{a} \)
(b) \(\frac{c}{a} \)

(c) \(\frac{a}{c} \)
(d) \(\frac{a}{b} \)
Solution

(a). Let \(a,\ b,\ c \) be in G.P. with common ratio \(r \).
Then, \(b = ar \) and \(c = ar^2 \).
So, the equation of the line is \(ax + by + c = 0 \)
\[\Rightarrow ax + a yr + ar^2 = 0 \quad \Rightarrow x + ry + r^2 = 0 \]
This line cuts the curve \(x + 2y^2 = 0 \)
Eliminating \(x \), we get \(2y^2 - ry + r^2 = 0 \)
If the roots of the quadratic equation are \(y_1 \) and \(y_2 \), then
\[y_1 + y_2 = \frac{r}{2} \Rightarrow 2(y_1 + y_2) = r = \frac{b}{a} = \frac{c}{b}. \]

Question

If \(a,\ b,\ c \) are in A.P., \(a,\ b,\ c \) are in G.P. and \(b,\ y,\ c \) are in
G.P., the point \((x,\ y)\) lies on
(a) a straight line
(b) a circle
(c) an ellipse
(d) a hyperbola

Ans. (b)

Solution We have \(2b = a + c,\ x^2 = ab,\ y^2 = bc \) so that \(x^2 + y^2 = b(a + c) = 2b^2 \) which is a circle.

Question

The second degree equation \(x^2 + 3xy + 2y^2 + 3x + 5y + 2 = 0 \) represents
(a) parabola
(b) ellipse
(c) hyperbola
(d) pair of straight lines
Solution

Ans (d)

Here \(a=1, b=2, g = \frac{3}{2}, c = \frac{5}{2}, \) and \(e = 2\)

thus \(abc + 2fgh - af^2 - bg^2 - ch^2 = \)

\[= 1(2)(2) + 2\left(\frac{5}{2}\right)\left(\frac{3}{2}\right)\left(\frac{3}{2}\right)\]

\[-1\left(\frac{5}{2}\right)^2 - 2\left(\frac{3}{2}\right)^2 - 2\left(\frac{3}{2}\right)^2 = 0\]

thus the second degree equation represents pair of straight lines.

\[\because \Box\]

To recall standard integrals

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(\int f(x),dx)</th>
<th>(g(x))</th>
<th>(\int g(x),dx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^n)</td>
<td>(\frac{x^{n+1}}{n+1}) ((n \neq -1))</td>
<td>([g(x)]^n)</td>
<td>(\frac{[g(x)]^{n+1}}{n+1}) ((n \neq -1))</td>
</tr>
<tr>
<td>(\frac{1}{x})</td>
<td>(\ln</td>
<td>x</td>
<td>)</td>
</tr>
<tr>
<td>(e^x)</td>
<td>(e^x)</td>
<td>(a^x)</td>
<td>(\frac{a^x}{\ln a} (a > 0))</td>
</tr>
<tr>
<td>(\sin x)</td>
<td>(-\cos x)</td>
<td>(\sinh x)</td>
<td>(\cosh x)</td>
</tr>
<tr>
<td>(\cos x)</td>
<td>(\sin x)</td>
<td>(\cosh x)</td>
<td>(\sinh x)</td>
</tr>
<tr>
<td>(\tan x)</td>
<td>(-\ln</td>
<td>\cos x</td>
<td>)</td>
</tr>
<tr>
<td>(\cosec x)</td>
<td>(\ln</td>
<td>\tan \frac{x}{2}</td>
<td>)</td>
</tr>
<tr>
<td>(\sec x)</td>
<td>(\ln</td>
<td>\sec x + \tan x</td>
<td>)</td>
</tr>
<tr>
<td>(\sec^2 x)</td>
<td>(\tan x)</td>
<td>(\sech^2 x)</td>
<td>(\tanh x)</td>
</tr>
<tr>
<td>(\cot x)</td>
<td>(\ln</td>
<td>\sin x</td>
<td>)</td>
</tr>
<tr>
<td>(\sin^2 x)</td>
<td>(\frac{x}{2} - \frac{1}{2}x)</td>
<td>(\sinh^2 x)</td>
<td>(\sinh\frac{2x}{2} - \frac{x}{2})</td>
</tr>
<tr>
<td>(\cos^2 x)</td>
<td>(\frac{x}{2} + \frac{1}{2}x)</td>
<td>(\cosh^2 x)</td>
<td>(\frac{\sinh^2 x}{2} + \frac{1}{2})</td>
</tr>
</tbody>
</table>
Some series Expansions -

\[
\frac{\pi}{2} = (\frac{2}{1}) (\frac{2}{3}) (\frac{4}{3}) (\frac{4}{5}) (\frac{6}{5}) (\frac{6}{7}) (\frac{8}{7}) (\frac{8}{9}) \cdots
\]

\[
\pi = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \frac{4}{11} + \frac{4}{13} - \cdots
\]

\[
\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots
\]

\[
\sigma = \sqrt{2} \left(1 - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{7}} + \cdots \right)
\]

\[
\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \sum_{n=1}^{\infty} \frac{1}{n^2}
\]
\[
\int_0^{\pi^2} \log \sin x \, dx = -\frac{\pi}{2} \log 2 = -\frac{\pi}{2} \log \frac{1}{2}
\]

Solve a series problem

\[
\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \ldots \text{ up to } \infty = \frac{\pi^2}{6}, \text{ then value of } \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots \text{ up to } \infty \text{ is}
\]

(a) \(\frac{\pi^2}{4} \)
(b) \(\frac{\pi^2}{6} \)
(c) \(\frac{\pi^2}{8} \)
(d) \(\frac{\pi^2}{12} \)

Ans. (c)

Solution We have:

\[
\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \ldots \text{ up to } \infty = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \ldots \text{ up to } \infty - \frac{1}{2^2} \left[1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots \right]
\]

\[
= \frac{\pi^2}{6} - \frac{1}{4} \left(\frac{\pi^2}{6} \right) = \frac{\pi^2}{8}
\]

\[
1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \ldots = \frac{\pi^2}{12}
\]

\[
\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \ldots = \frac{\pi^2}{24}
\]

\[
\sin \sqrt{x} = 1 - \frac{x}{3!} + \frac{x^2}{5!} - \frac{x^3}{7!} + \frac{x^4}{9!} - \frac{x^5}{11!} + \ldots
\]
\[
\begin{align*}
\cos x &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots = \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!} \\
\sin x &= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots = \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} \\
\cosh x &= 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} \\
\sinh x &= x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} \\
\tan^{-1} x &= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \quad (-1 \leq x < 1) \\
\tan x &= x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \cdots \\
&= \frac{2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!} + \cdots \quad |x| < \frac{\pi}{2} \\
\sec x &= 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + \cdots + \frac{B_{2n}x^{2n}}{(2n)!} + \cdots \quad |x| < \frac{\pi}{2} \\
\csc x &= 1 + \frac{x^2}{6} + \frac{7x^4}{360} + \frac{31x^6}{15120} + \cdots \\
&= \frac{2(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!} + \cdots \quad 0 < |x| < \pi \\
\cot x &= \frac{1}{x} - \frac{x^3}{3} - \frac{2x^5}{45} - \frac{2x^7}{945} - \cdots + \frac{2^{2n}B_{2n}x^{2n-1}}{(2n)!} + \cdots \quad 0 < |x| < \pi \\
\tan x &= x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots \\
\sec x &= 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \cdots \\
\log (\cos x) &= -\frac{x^2}{2} - \frac{2x^4}{4} - \cdots \\
\log (1 + \sin x) &= x - \frac{x^2}{2} + \frac{x^3}{6} - \frac{x^4}{12} + \cdots
\end{align*}
\]
\[
\sin^{-1} x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \cdots \quad |x| < 1
\]

\[
\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x
\]

\[
= \frac{\pi}{2} \left(x - \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \cdots \right) \quad |x| < 1
\]

\[
\tan^{-1} x = \left\{
\begin{array}{ll}
\frac{\pi}{2} - \frac{1}{x} - \frac{1}{3x^3} - \frac{1}{5x^5} + \cdots & \text{if } x \geq 1 \\
\frac{1}{x} - \frac{1}{3x^3} - \frac{1}{5x^5} + \cdots & \text{if } x \leq -1
\end{array}
\right.
\]

\[
\sec^{-1} x = \cos^{-1} \left(\frac{1}{x} \right)
\]

\[
= \frac{\pi}{2} \left(1 + \frac{1}{2 \cdot 3x^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5x^5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7x^7} + \cdots \right) \quad |x| > 1
\]

\[
\csc^{-1} x = \sin^{-1} \left(\frac{1}{x} \right)
\]

\[
= \frac{1}{x} + \frac{1}{2 \cdot 3x^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5x^5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7x^7} + \cdots \quad |x| > 1
\]

\[
\cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x
\]

\[
= \left\{
\begin{array}{ll}
\frac{\pi}{2} - \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \right) & |x| < 1 \\
px - \frac{1}{3x^3} + \frac{1}{5x^5} + \cdots & p = 0 \text{ if } x \geq 1 \\
p = 1 \text{ if } x \leq -1
\end{array}
\right.
\]
\[e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots = \sum_{n=0}^{\infty} \frac{x^n}{n!} \]

\[\ln x = \begin{cases} \frac{x-1}{x} + \frac{1}{2} \left(\frac{x-1}{x} \right)^2 + \frac{1}{3} \left(\frac{x-1}{x} \right)^3 + \ldots & (x > 1) \\ \frac{1}{x} \left(\frac{1}{x} \right)^{y} & (x > \frac{1}{2}) \\ (x-1) - \frac{1}{2} (x-1)^2 + \frac{1}{3} (x-1)^3 - \ldots & (0 < x \leq 2) \\ \ln (1+x) = \frac{x}{2} x^2 + \frac{1}{3} x^3 - \ldots & (|x| < 1) \end{cases} \]

\[\log_{\varepsilon} (1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \ldots \infty (-1 \leq x < 1) \]

\[\log_{\varepsilon} (1+x) - \log_{\varepsilon} (1-x) = \]

\[\log_{\varepsilon} \left(1 + \frac{1}{n} \right) = \log_{\varepsilon} \left(\frac{n+1}{n} \right) = 2 \left[\frac{1}{2n+1} + \frac{1}{3(2n+1)^3} + \frac{1}{5(2n+1)^5} + \ldots \infty \right] \]

\[\log_{\varepsilon} (1+x) + \log_{\varepsilon} (1-x) = \log_{\varepsilon} (1-x^2) = -2 \left(\frac{x^2}{2} + \frac{x^4}{4} + \ldots \infty \right) (-1 < x < 1) \]

\[\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \ldots = \frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + \ldots \]
Important Results

(i) \(\int_{0}^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} \, dx = \frac{\pi}{4} - \int_{0}^{\pi/2} \frac{\cos^n x}{\sin^n x + \cos^n x} \, dx \)

(b) \(\int_{0}^{\pi/2} \frac{\tan^n x}{1 + \tan^n x} \, dx = \frac{\pi}{4} - \int_{0}^{\pi/2} \frac{dx}{1 + \tan^n x} \)

(c) \(\int_{0}^{\pi/2} \frac{dx}{1 + \cot^n x} = \frac{\pi}{4} + \int_{0}^{\pi/2} \frac{\cot^n x}{1 + \cot^n x} \, dx \)

(d) \(\int_{0}^{\pi/2} \frac{\tan^n x}{\cot^n x} \, dx = \pi - \int_{0}^{\pi/2} \frac{\cot^n x}{\tan^n x + \cot^n x} \, dx \)

(e) \(\int_{0}^{\pi/2} \frac{\sec^n x}{\sec^n x + \cosec^2 x} \, dx = \pi - \int_{0}^{\pi/2} \frac{\cosec^n x}{\sec^n x + \cosec^2 x} \, dx \) where, \(n \in \mathbb{R} \)

(ii) \(\int_{0}^{\pi/2} \frac{a^{\sin^n x}}{a^{\sin^n x} + a^{\cos^n x}} \, dx = \int_{0}^{\pi/2} \frac{a^{\cos^n x}}{a^{\sin^n x} + a^{\cos^n x}} \, dx = \frac{\pi}{4} \)

(iii) (a) \(\int_{0}^{\pi/2} \log \sin x \, dx = \int_{0}^{\pi/2} \log \cos x \, dx = -\frac{\pi}{2} \log 2 \)

(b) \(\int_{0}^{\pi/2} \log \tan x \, dx = \int_{0}^{\pi/2} \log \cot x \, dx = 0 \)

(c) \(\int_{0}^{\pi/2} \log \sec x \, dx = \int_{0}^{\pi/2} \log \cosec x \, dx = \frac{\pi}{2} \log 2 \)

(iv) (a) \(\int_{0}^{\infty} e^{-ax} \sin bx \, dx = \frac{b}{a^2 + b^2} \)

(b) \(\int_{0}^{\infty} e^{-ax} \cos bx \, dx = \frac{a}{a^2 + b^2} \)

(c) \(\int_{0}^{\infty} e^{-ax} x^n \, dx = \frac{n!}{a^n + 1} \)
\[
\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left(x + \sqrt{x^2 - a^2} \right) + C \\
\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left(x + \sqrt{x^2 + a^2} \right) + C \\
\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left(\frac{x-a}{x+a} \right) + C \\
\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left(\frac{a+x}{a-x} \right) + C \\
\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a} \right) + C \\
\int \sqrt{a^2 + x^2} \, dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \sinh^{-1} \left(\frac{x}{a} \right) + C \\
\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \cosh^{-1} \left(\frac{x}{a} \right) + C
\]
Good Luck to you for your Preparations, References, and Exams

All Other Books written by me can be downloaded from

Professor Subhashish Chattopadhyay

Learn more at http://skmclasses.weebly.com/iit-jee-home-tuitions-bangalore.html

Twitter - https://twitter.com/ZookeeperPhy

Facebook - https://www.facebook.com/IIT.JEE.by.Prof.Subhashish/

Blog - http://skmclasses.kinja.com